191 research outputs found
Educational Games & Health Sciences
This webinar will begin with an overview of educational games and their benefits. Rina Wehbe, University of Waterloo, will speak about her research and recent game “Above Water” which informs people about strategies for coping with anxiety. Zeb Mathews, University of Tennessee, will speak about his game, “PubWizard” which quizzes graduate level informatics students\u27 knowledge of primary and secondary sources. This will be followed by an interactive exercise of exploring some of the National Institutes of Health (NIH) & National Library of Medicine (NLM) endorsed games. A Q&A session will follow. Are you interested in creating a game? We’ll have an exit survey to discuss hosting a game creation course.
The learning objectives currently include the following:
- Understand how educational games and gamification are unique - Learn about the possible benefits and advantages of learning with games - Better general understanding of the process of creating an educational game - Become acquainted with 2 educational games that intersect with the health sciences - Understand how basic game design elements are significant in educational games - Become familiar with some NIH & NLM endorsed games
Outline:Introduction/Overview: 5-10 min.Rina Wehbe (Above Water): 20 min.Zeb Mathews (PubWizard): 20 min.Game Exercise: 15-20 min.Q&A & Survey: 5–10 min
Brain Diffusion for Visual Exploration: Cortical Discovery using Large Scale Generative Models
A long standing goal in neuroscience has been to elucidate the functional
organization of the brain. Within higher visual cortex, functional accounts
have remained relatively coarse, focusing on regions of interest (ROIs) and
taking the form of selectivity for broad categories such as faces, places,
bodies, food, or words. Because the identification of such ROIs has typically
relied on manually assembled stimulus sets consisting of isolated objects in
non-ecological contexts, exploring functional organization without robust a
priori hypotheses has been challenging. To overcome these limitations, we
introduce a data-driven approach in which we synthesize images predicted to
activate a given brain region using paired natural images and fMRI recordings,
bypassing the need for category-specific stimuli. Our approach -- Brain
Diffusion for Visual Exploration ("BrainDiVE") -- builds on recent generative
methods by combining large-scale diffusion models with brain-guided image
synthesis. Validating our method, we demonstrate the ability to synthesize
preferred images with appropriate semantic specificity for well-characterized
category-selective ROIs. We then show that BrainDiVE can characterize
differences between ROIs selective for the same high-level category. Finally we
identify novel functional subdivisions within these ROIs, validated with
behavioral data. These results advance our understanding of the fine-grained
functional organization of human visual cortex, and provide well-specified
constraints for further examination of cortical organization using
hypothesis-driven methods.Comment: NeurIPS 2023 (Oral). Project page:
https://www.cs.cmu.edu/~afluo/BrainDiVE
BrainSCUBA: Fine-Grained Natural Language Captions of Visual Cortex Selectivity
Understanding the functional organization of higher visual cortex is a
central focus in neuroscience. Past studies have primarily mapped the visual
and semantic selectivity of neural populations using hand-selected stimuli,
which may potentially bias results towards pre-existing hypotheses of visual
cortex functionality. Moving beyond conventional approaches, we introduce a
data-driven method that generates natural language descriptions for images
predicted to maximally activate individual voxels of interest. Our method --
Semantic Captioning Using Brain Alignments ("BrainSCUBA") -- builds upon the
rich embedding space learned by a contrastive vision-language model and
utilizes a pre-trained large language model to generate interpretable captions.
We validate our method through fine-grained voxel-level captioning across
higher-order visual regions. We further perform text-conditioned image
synthesis with the captions, and show that our images are semantically coherent
and yield high predicted activations. Finally, to demonstrate how our method
enables scientific discovery, we perform exploratory investigations on the
distribution of "person" representations in the brain, and discover
fine-grained semantic selectivity in body-selective areas. Unlike earlier
studies that decode text, our method derives voxel-wise captions of semantic
selectivity. Our results show that BrainSCUBA is a promising means for
understanding functional preferences in the brain, and provides motivation for
further hypothesis-driven investigation of visual cortex
Spontaneous splenic rupture in an active duty Marine upon return from Iraq: a case report
<p>Abstract</p> <p>Introduction</p> <p>Atraumatic splenic rupture is a rare event that has been associated with several infectious disease processes. In the active duty military population, potential exposure to these pathogens is significant. Here we discuss the case of an active duty Marine with spontaneous splenic rupture upon return from a six-month deployment in Iraq.</p> <p>Case presentation</p> <p>A previously healthy 30-year-old Caucasian male active duty Marine presented with abdominal pain, fever and diarrhea after deployment to Iraq in support of Operation Iraqi Freedom. Based on clinical and radiographic evidence, a diagnosis of spontaneous splenic rupture was ultimately suspected. After exploratory laparotomy with confirmation of rupture, splenectomy was performed, and the patient made a full, uneventful recovery. Histopathologic examination revealed mild splenomegaly with a ruptured capsule of undetermined cause.</p> <p>Conclusion</p> <p>Spontaneous splenic rupture is a rare event that may lead to life-threatening hemorrhage if not diagnosed and treated quickly. Although the cause of this patient's case was unknown, atraumatic splenic rupture has been associated with a variety of infectious diseases and demonstrates some risks the active duty military population may face while on deployment. Having an awareness of these pathogens and their role in splenic rupture, clinicians caring for military personnel must be prepared to recognize and treat this potentially fatal complication.</p
Interplay between ESR1/PIK3CA codon variants, oncogenic pathway alterations and clinical phenotype in patients with metastatic breast cancer (MBC): comprehensive circulating tumor DNA (ctDNA) analysis
Background: although being central for the biology and druggability of hormone-receptor positive, HER2 negative metastatic breast cancer (MBC), ESR1 and PIK3CA mutations are simplistically dichotomized as mutated or wild type in current clinical practice. Methods: The study analyzed a multi-institutional cohort comprising 703 patients with luminal-like MBC characterized for circulating tumor DNA through next generation sequencing (NGS). Pathway classification was defined based on previous work (i.e., RTK, RAS, RAF, MEK, NRF2, ER, WNT, MYC, P53, cell cycle, notch, PI3K). Single nucleotide variations (SNVs) were annotated for their oncogenicity through OncoKB. Only pathogenic variants were included in the models. Associations among clinical characteristics, pathway classification, and ESR1/PIK3CA codon variants were explored. Results: The results showed a differential pattern of associations for ESR1 and PIK3CA codon variants in terms of co-occurring pathway alterations patterns of metastatic dissemination, and prognosis. ESR1 537 was associated with SNVs in the ER and RAF pathways, CNVs in the MYC pathway and bone metastases, while ESR1 538 with SNVs in the cell cycle pathway and liver metastases. PIK3CA 1047 and 542 were associated with CNVs in the PI3K pathway and with bone metastases. Conclusions: The study demonstrated how ESR1 and PIK3CA codon variants, together with alterations in specific oncogenic pathways, can differentially impact the biology and clinical phenotype of luminal-like MBC. As novel endocrine therapy agents such as selective estrogen receptor degraders (SERDS) and PI3K inhibitors are being developed, these results highlight the pivotal role of ctDNA NGS to describe tumor evolution and optimize clinical decision making
Discrimination between two different grades of human glioma based on blood vessel infrared spectral imaging
Gliomas are brain tumours classified into four grades with increasing malignancy from I to IV. The development and the progression of malignant glioma largely depend on the tumour vascularization. Due to their tissue heterogeneity, glioma cases can be difficult to classify into a specific grade using the gold standard of histological observation, hence the need to base classification on a quantitative and reliable analytical method for accurately grading the disease. Previous works focused specifically on vascularization study by Fourier transform infrared (FTIR) spectroscopy, proving this method to be a way forward to detect biochemical changes in the tumour tissue not detectable by visual techniques. In this project, we employed FTIR imaging using a focal plane array (FPA) detector and globar source to analyse large areas of glioma tumour tissue sections via molecular fingerprinting in view of helping to define markers of the tumour grade. Unsupervised multivariate analysis (hierarchical cluster analysis and principal component analysis) of blood vessel spectral data, retrieved from the FPA images, revealed the fine structure of the borderline between two areas identified by a pathologist as grades III and IV. Spectroscopic indicators are found capable of discriminating different areas in the tumour tissue and are proposed as biomolecular markers for potential future use of grading gliomas. Graphical Abstract Infrared imaging of glioma blood vessels provides a means to revise the pathologists' line of demarcation separating grade III (GIII) from grade IV (GIV) parts
Targeting the IL-6 Dependent Phenotype Can Identify Novel Therapies for Cholangiocarcinoma
The need for new therapies for cholangiocarcinoma is highlighted by their poor prognosis and refractoriness to chemotherapy. Increased production of Interleukin-6 promotes cholangiocarcinoma growth and contributes to chemoresistance by activating cell survival mechanisms. We sought to identify biologically active compounds capable of ameliorating the phenotypic effects of IL-6 expression and to explore their potential therapeutic use for cholangiocarcinoma.A genomic signature associated with Interleukin-6 expression in Mz-ChA-1 human malignant cholangiocytes was derived. Computational bioinformatics analysis was performed to identify compounds that induced inverse gene changes to the signature. The effect of these compounds on cholangiocarcinoma growth was then experimentally verified in vitro and in vivo. Interactions with other therapeutic agents were evaluated using median effects analysis.A group of structurally related compounds, nitrendipine, nifedipine and felodipine was identified. All three compounds were cytotoxic to Mz-ChA-1 cells with an IC50 for felodipine of 26 µM, nitrendipine, 44 µM and nifedipine, 15 µM. Similar results were observed in KMCH-1, CC-LP-1 and TFK-1 cholangiocarcinoma cell lines. At a fractional effect of 0.5, all three agents were synergistic with either camptothecin or gemcitabine in Mz-ChA-1 cells in vitro. Co-administration of felodipine and gemcitabine decreased the growth of Mz-ChA-1 cell xenografts in nude athymic mice.Computational bioinformatics analysis of phenotype-based genomic expression can be used to identify therapeutic agents. Using this drug discovery approach based on targeting a defined tumor associated phenotype, we identified compounds with the potential for therapeutic use in cholangiocarcinoma
- …