5,279 research outputs found
Local molecular field theory for the treatment of electrostatics
We examine in detail the theoretical underpinnings of previous successful
applications of local molecular field (LMF) theory to charged systems. LMF
theory generally accounts for the averaged effects of long-ranged components of
the intermolecular interactions by using an effective or restructured external
field. The derivation starts from the exact Yvon-Born-Green hierarchy and shows
that the approximation can be very accurate when the interactions averaged over
are slowly varying at characteristic nearest-neighbor distances. Application of
LMF theory to Coulomb interactions alone allows for great simplifications of
the governing equations. LMF theory then reduces to a single equation for a
restructured electrostatic potential that satisfies Poisson's equation defined
with a smoothed charge density. Because of this charge smoothing by a Gaussian
of width sigma, this equation may be solved more simply than the detailed
simulation geometry might suggest. Proper choice of the smoothing length sigma
plays a major role in ensuring the accuracy of this approximation. We examine
the results of a basic confinement of water between corrugated wall and justify
the simple LMF equation used in a previous publication. We further generalize
these results to confinements that include fixed charges in order to
demonstrate the broader impact of charge smoothing by sigma. The slowly-varying
part of the restructured electrostatic potential will be more symmetric than
the local details of confinements.Comment: To be published in J Phys-Cond Matt; small misprint corrected in Eq.
(12) in V
Density fluctuations and the structure of a nonuniform hard sphere fluid
We derive an exact equation for density changes induced by a general external
field that corrects the hydrostatic approximation where the local value of the
field is adsorbed into a modified chemical potential. Using linear response
theory to relate density changes self-consistently in different regions of
space, we arrive at an integral equation for a hard sphere fluid that is exact
in the limit of a slowly varying field or at low density and reduces to the
accurate Percus-Yevick equation for a hard core field. This and related
equations give accurate results for a wide variety of fields
Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water
Spherical truncations of Coulomb interactions in standard models for water
permit efficient molecular simulations and can give remarkably accurate results
for the structure of the uniform liquid. However truncations are known to
produce significant errors in nonuniform systems, particularly for
electrostatic properties. Local molecular field (LMF) theory corrects such
truncations by use of an effective or restructured electrostatic potential that
accounts for effects of the remaining long-ranged interactions through a
density-weighted mean field average and satisfies a modified Poisson's equation
defined with a Gaussian-smoothed charge density. We apply LMF theory to three
simple molecular systems that exhibit different aspects of the failure of a
naive application of spherical truncations -- water confined between
hydrophobic walls, water confined between atomically-corrugated hydrophilic
walls, and water confined between hydrophobic walls with an applied electric
field. Spherical truncations of 1/r fail spectacularly for the final system in
particular, and LMF theory corrects the failings for all three. Further, LMF
theory provides a more intuitive way to understand the balance between local
hydrogen bonding and longer-ranged electrostatics in molecular simulations
involving water.Comment: Submitted to PNA
Local molecular field theory for effective attractions between like charged objects in systems with strong Coulomb interactions
Strong short ranged positional correlations involving counterions can induce
a net attractive force between negatively charged strands of DNA, and lead to
the formation of ion pairs in dilute ionic solutions. But the long range of the
Coulomb interactions impedes the development of a simple local picture. We
address this general problem by mapping the properties of a nonuniform system
with Coulomb interactions onto those of a simpler system with short ranged
intermolecular interactions in an effective external field that accounts for
the averaged effects of appropriately chosen long ranged and slowly varying
components of the Coulomb interactions. The remaining short ranged components
combine with the other molecular core interactions and strongly affect pair
correlations in dense or strongly coupled systems. We show that pair
correlation functions in the effective short ranged system closely resemble
those in the uniform primitive model of ionic solutions, and illustrate the
formation of ion pairs and clusters at low densities. The theory accurately
describes detailed features of the effective attraction between two equally
charged walls at strong coupling and intermediate separations of the walls. New
analytical results for the minimal coupling strength needed to get any
attraction and for the separation where the attractive force is a maximum are
presented.Comment: 8 pages, 5 figures. To be published in PNA
Seam tracking performance of a Coaxial Weld Vision System and pulsed welding
This report describes a continuation of a series of tests on the Coaxial Weld Vision System at MSFC. The ability of the system to compensate for transients associated with pulsed current welding is analyzed. Using the standard image processing approach for root pass seam tracking, the system is also tested for the ability to track the toe of a previous weld bead, for tracking multiple pass weld joints. This Coaxial Weld Vision System was developed by the Ohio State University (OSU) Center for Welding Research and is a part of the Space Shuttle Main Engine Robotic Welding Development System at MSFC
A new approach for efficient simulation of Coulomb interactions in ionic fluids
We propose a simplified version of local molecular field (LMF) theory to
treat Coulomb interactions in simulations of ionic fluids. LMF theory relies on
splitting the Coulomb potential into a short-ranged part that combines with
other short-ranged core interactions and is simulated explicitly. The averaged
effects of the remaining long-ranged part are taken into account through a
self-consistently determined effective external field. The theory contains an
adjustable length parameter sigma that specifies the cut-off distance for the
short-ranged interaction. This can be chosen to minimize the errors resulting
from the mean-field treatment of the complementary long-ranged part. Here we
suggest that in many cases an accurate approximation to the effective field can
be obtained directly from the equilibrium charge density given by the Debye
theory of screening, thus eliminating the need for a self-consistent treatment.
In the limit sigma -> 0, this assumption reduces to the classical Debye
approximation. We examine the numerical performance of this approximation for a
simple model of a symmetric ionic mixture. Our results for thermodynamic and
structural properties of uniform ionic mixtures agree well with similar results
of Ewald simulations of the full ionic system. In addition we have used the
simplified theory in a grand-canonical simulation of a nonuniform ionic mixture
where an ion has been fixed at the origin. Simulations using short-ranged
truncations of the Coulomb interactions alone do not satisfy the exact
condition of complete screening of the fixed ion, but this condition is
recovered when the effective field is taken into account. We argue that this
simplified approach can also be used in the simulations of more complex
nonuniform systems.Comment: To be published in Journal of Chemical Physic
Vacuum Energy Density for Massless Scalar Fields in Flat Homogeneous Spacetime Manifolds with Nontrivial Topology
Although the observed universe appears to be geometrically flat, it could
have one of 18 global topologies. A constant-time slice of the spacetime
manifold could be a torus, Mobius strip, Klein bottle, or others. This global
topology of the universe imposes boundary conditions on quantum fields and
affects the vacuum energy density via Casimir effect. In a spacetime with such
a nontrivial topology, the vacuum energy density is shifted from its value in a
simply-connected spacetime. In this paper, the vacuum expectation value of the
stress-energy tensor for a massless scalar field is calculated in all 17
multiply-connected, flat and homogeneous spacetimes with different global
topologies. It is found that the vacuum energy density is lowered relative to
the Minkowski vacuum level in all spacetimes and that the stress-energy tensor
becomes position-dependent in spacetimes that involve reflections and
rotations.Comment: 25 pages, 11 figure
Circles in the Sky: Finding Topology with the Microwave Background Radiation
If the universe is finite and smaller than the distance to the surface of
last scatter, then the signature of the topology of the universe is writ large
on the microwave background sky. We show that the microwave background will be
identified at the intersections of the surface of last scattering as seen by
different ``copies'' of the observer. Since the surface of last scattering is a
two-sphere, these intersections will be circles, regardless of the background
geometry or topology. We therefore propose a statistic that is sensitive to all
small, locally homogeneous topologies. Here, small means that the distance to
the surface of last scatter is smaller than the ``topology scale'' of the
universe.Comment: 14 pages, 10 figures, IOP format. This paper is a direct descendant
of gr-qc/9602039. To appear in a special proceedings issue of Class. Quant.
Grav. covering the Cleveland Topology & Cosmology Worksho
Special Theory of Relativity through the Doppler Effect
We present the special theory of relativity taking the Doppler effect as the
starting point, and derive several of its main effects, such as time dilation,
length contraction, addition of velocities, and the mass-energy relation, and
assuming energy and momentum conservation, we discuss how to introduce the
4-momentum in a natural way. We also use the Doppler effect to explain the
"twin paradox", and its version on a cylinder. As a by-product we discuss
Bell's spaceship paradox, and the Lorentz transformation for arbitrary
velocities in one dimension.Comment: 20 pages, 1 figur
- …