134 research outputs found

    Vitamin C Promotes Wound Healing: The Use of in Vitro Scratch Assays to Assess Re-Epithelialization

    Get PDF
    Vitamin C contributes to the health of the cardiovascular, immunological and nervous system and also supports healthy bone, lung, and skin function and wound healing. The mechanism of action of vitamin C in human health is as diverse as its targets and effects. For example, vitamin C functions as an antioxidant, signals changes in gene expression, plays a role in protein metabolism, and serves a cofactor in several biosynthetic pathways including collagen synthesis. Here in this chapter we will explore the role of vitamin C in support of improved wound healing during the re-epithelialization stage. While vitamin C supports wound healing in early stages by reducing inflammation, vitamin C continues to support wound healing by promoting collagen synthesis and epithelial cell migration in the re-epithelialization stage. The re-epithelialization stage of wound healing has been modeled and investigated using an in vitro scratch-assay in which a monolayer of epithelial cells is scratched to create a gap or void in the monolayer to represent the wound. The rate of epithelial cell migration back across this gap to re-establish the monolayer can then be used as a model and measurement of the re-epithelialization stage of wound healing. Again, this Chapter will review the literature on both a) the uses of in vitro scratch assays to investigate the mechanism of vitamin C enhanced epithelial cell migration and b) the potential uses of the in vitro scratch assay to study the bioavailability and absorption of liposomal vitamin C

    Physiological and Cellular Targets of Neurotrophic Anxiolytic Phytochemicals in Food and Dietary Supplements

    Get PDF
    Diet impacts anxiety in two main ways. First anxiety can be caused by deficiencies in antioxidants, neurotransmitter precursors, amino acids, cations and vitamins and other cofactors. Second, anxiety can be reduced by anxiolytic nutraceuticals which are food molecules that bind to molecular targets of the amygdala and the hypothalamus-pituitary–adrenal axis (HPA-axis). Anxiety is a feeling of fear that arises from a perceived threat and can be a beneficial coping mechanism to threats and stressors. However excessive anxiety is a disorder that interferes with healthy responses to stressors. The amygdala is responsible for assigning value to a threat or stressor and triggering the HPA-axis to support the body wide system responses to the threat. The amygdala also communicates with the neuroplastic learning and memory centers of the hippocampus to fix or set a learned value to the threat. Interestingly, many anxiolytic nutraceuticals that show benefits in human clinical trials have neurotrophic activity and increase neuronal plasticity. Moreover, anxiolytic nutraceuticals either act like the neurotrophins, nerve growth factor (NGF), brain derived neurotrophic factor (BDNF and neurotrophin-3 (NT3) by either directly binding to or potentiating the tyrosine receptor kinase (TRK) family of receptors (TRKA, TRKB and TRKC) and activating the ERK1/2 signal transduction pathway associated with neurite outgrowth and neural plasticity. This chapter will explore the neuritogenic activity of clinically proven plant-based anxiolytic nutraceuticals and examine the commonality of TRKA-C receptors and the ERK1/2 signaling pathway in the pharmacological and nutraceutical treatment of anxiety disorders

    Structure-activity study of a laminin α1 chain active peptide segment Ile-Lys-Val-Ala-Val (IKVAV)

    Get PDF
    AbstractThe IKVAV sequence, one of the most potent active sites of laminin-1, has been shown to promote cell adhesion, neurite outgrowth, and tumor growth. Here we have determined the structural requirements of the IKVAV sequence for cell attachment and neurite outgrowth using various 12-mer synthetic peptide analogs. All-l- and all-d-IKVAV peptides showed cell attachment and neurite outgrowth activities. In contrast, all-l- and all-d-reverse-sequence peptides were not active. Some of the analogs, in which the lysine and isoleucine residues of the IKVAV peptide were substituted with different amino acids, promoted cell attachment, but none of the analog peptides showed neurite outgrowth activity comparable to that of the IKVAV peptide. These results suggest that the lysine and isoleucine residues are critical for the biological functions of the IKVAV peptide

    bFGF and its low affinity receptors in the pathogenesis of HIV-associated nephropathy in transgenic mice

    Get PDF
    bFGF and its low affinity receptors in the pathogenesis of HIV-associated nephropathy in transgenic mice. HIV-associated nephropathy is characterized by extensive tubulointerstitial disease with epithelial cell injury, microcystic proliferation, and tubular regeneration with glomerulosclerosis. To explore the role of bFGF as a mediator of HIV-induced interstitial disease, we utilized an HIV transgenic mouse model that manifests clinical and histological features observed in patients. In transgenic mice, simultaneous renal epithelial cell proliferation and injury were detected in vivo. In areas of microcystic proliferation, immunoreactive bFGF colocalized with extracellular matrix. Kidneys from transgenic mice had increased bFGF low affinity binding sites, particularly in the renal interstitium. In vitro, transgenic renal tubular epithelial cells proliferated more rapidly and generated tubular structures spontaneously, in marked contrast to nontransgenic renal cells where these pathologic features could be mimicked by exogenous bFGF. These studies suggest that renal bFGF and its receptors play an important role in the pathogenesis of HIV-associated nephropathy

    Intrinsic structure and dynamics of the water/nitrobenzene interface

    Get PDF
    In this paper we present results of a detailed and systematic molecular dynamics study of the water/nitrobenzene interface. Using a simple procedure to eliminate fluctuations of the interface position, we are able to obtain true intrinsic profiles for several properties (density, hydrogen bonds, molecular orientation, etc.) in the direction perpendicular to the interfacial plane. Our results show that both water and organic inter-facial molecules form a tightly packed layer oriented parallel to the interface, with reduced mobility in the perpendicular direction. Beyond this layer, water quickly restores its bulk structure, while nitrobenzene exhibits structural anisotropies that extend further into the bulk region: Water molecules that protrude farthest into the organic phase point one hydrogen atom in the direction perpendicular to the interface, forming a hydrogen bond with a nitrobenzene oxygen. By fitting both the global and the intrinsic density profiles, we obtain estimates for the total and intrinsic interface widths, respectively. These are combined with capillary wave theory to produce a self-consistent method for the calculation of the inter-facial tension. Values calculated using this method are in very good agreement with direct calculations from the components of the pressure tensor

    A critical assessment of methods for the intrinsic analysis of liquid interfaces. 1. surface site distributions

    Get PDF
    Substantial progress in our understanding of interfacial structure and dynamics has stemmed from the recent development of algorithms that allow for an intrinsic analysis of fluid interfaces. These work by identifying the instantaneous location of the interface, at the atomic level, for each molecular configuration and then computing properties relative to this location. Such a procedure eliminates the broadening of the interface caused by capillary waves and reveals the underlying features of the system. However, a precise definition of which molecules actually belong to the interfacial layer is difficult to achieve in practice. Furthermore, it is not known if the different intrinsic analysis methods are consistent with each other and yield similar results for the interfacial properties. In this paper, we carry out a systematic and detailed comparison of the available methods for intrinsic analysis of fluid interfaces, based on a molecular dynamics simulation of the interface between liquid water and carbon tetrachloride. We critically assess the advantages and shortcomings of each method, based on reliability, robustness, and speed of computation, and establish consistent criteria for determining which molecules belong to the surface layer. We believe this will significantly contribute to make intrinsic analysis methods widely and routinely applicable to interfacial systems

    Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

    Full text link
    Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where "surface fields" may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given

    Speed accuracy tradeoff? Not so fast: Marginal changes in speed have inconsistent relationships with accuracy in real-world settings

    Get PDF
    The speed-accuracy tradeoff suggests that responses generated under time constraints will be less accurate. While it has undergone extensive experimental verification, it is less clear whether it applies in settings where time pressures are not being experimentally manipulated (but where respondents still vary in their utilization of time). Using a large corpus of 29 response time datasets containing data from cognitive tasks without experimental manipulation of time pressure, we probe whether the speed-accuracy tradeoff holds across a variety of tasks using idiosyncratic within-person variation in speed. We find inconsistent relationships between marginal increases in time spent responding and accuracy; in many cases, marginal increases in time do not predict increases in accuracy. However, we do observe time pressures (in the form of time limits) to consistently reduce accuracy and for rapid responses to typically show the anticipated relationship (i.e., they are more accurate if they are slower). We also consider analysis of items and individuals. We find substantial variation in the item-level associations between speed and accuracy. On the person side, respondents who exhibit more within-person variation in response speed are typically of lower ability. Finally, we consider the predictive power of a person's response time in predicting out-of-sample responses; it is generally a weak predictor. Collectively, our findings suggest the speed-accuracy tradeoff may be limited as a conceptual model in its application in non-experimental settings and, more generally, offer empirical results and an analytic approach that will be useful as more response time data is collected

    Structural Analysis of the UBA Domain of X-linked Inhibitor of Apoptosis Protein Reveals Different Surfaces for Ubiquitin-Binding and Self-Association

    Get PDF
    BACKGROUND: Inhibitor of apoptosis proteins (IAPs) belong to a pivotal antiapoptotic protein family that plays a crucial role in tumorigenesis, cancer progression, chemoresistance and poor patient-survival. X-linked inhibitor of apoptosis protein (XIAP) is a prominent member of IAPs attracting intense research because it has been demonstrated to be a physiological inhibitor of caspases and apoptosis. Recently, an evolutionarily conserved ubiquitin-associated (UBA) domain was identified in XIAP and a number of RING domain-bearing IAPs. This has placed the IAPs in the group of ubiquitin binding proteins. Here, we explore the three-dimensional structure of the XIAP UBA domain (XIAP-UBA) and how it interacts with mono-ubiquitin and diubiquitin conjugates. PRINCIPAL FINDINGS: The solution structure of the XIAP-UBA domain was determined by NMR spectroscopy. XIAP-UBA adopts a typical UBA domain fold of three tightly packed alpha-helices but with an additional N-terminal 3(10) helix. The XIAP-UBA binds mono-ubiquitin as well as Lys48-linked and linear-linked diubiquitins at low-micromolar affinities. NMR analysis of the XIAP-UBA-ubiquitin interaction reveals that it involves the classical hydrophobic patches surrounding Ile44 of ubiquitin and the conserved MGF/LV motif surfaces on XIAP-UBA. Furthermore, dimerization of XIAP-UBA was observed. Mapping of the self-association surface of XIAP-UBA reveals that the dimerization interface is formed by residues in the N-terminal 3(10) helix, helix alpha1 and helix alpha2, separate from the ubiquitin-binding surface. CONCLUSION: Our results provide the first structural information of XIAP-UBA and map its interaction with mono-ubiquitin, Lys48-linked and linear-linked diubiquitins. The notion that XIAP-UBA uses different surfaces for ubiquitin-binding and self-association provides a plausible model to explain the reported selectivity of XIAP in binding polyubiquitin chains with different linkages.published_or_final_versio

    Diseño de un manual de detección de ansiedad social en adolescentes

    Get PDF
    Curso de Especial InterésEl objetivo de este trabajo de grado ha sido diseñar un manual dirigido a padres y docentes, en el que se establezcan técnicas de detección de ansiedad social en adolescentes; el diseño de este manual permite un aprendizaje significativo de una forma diferente, en un lenguaje claro y preciso, en formato digital para un fácil acceso y portabilidad del material, logrando de esta forma, que la población adolescente sea beneficiada a través de las acciones que se emprenderán por parte de los padres de familia, docentes y profesionales.142 p.RESUMEN 1. JUSTIFICACIÓN 2. OBJETIVOS 3. ESTUDIO DEL MERCADO 4. PRESENTACIÓN DEL PRODUCTO 5. CLIENTES – SEGMENTACIÓN 6. COMPETENCIA 7. CANALES DE DISTRIBUCIÓN 8. RESULTADOS DEL ESTUDIO DE MERCADO 9. DISCUSIÓN DEL ESTUDIO DE MERCADO 10. PRESUPUESTO 11. RESULTADOS 12. CONCLUSIONES REFERENCIAS APÉNDICESPregradoPsicólog
    corecore