14 research outputs found

    Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration.

    Get PDF
    The epicardium and its derivatives provide trophic and structural support for the developing and adult heart. Here we tested the ability of human embryonic stem cell (hESC)-derived epicardium to augment the structure and function of engineered heart tissue in vitro and to improve efficacy of hESC-cardiomyocyte grafts in infarcted athymic rat hearts. Epicardial cells markedly enhanced the contractility, myofibril structure and calcium handling of human engineered heart tissues, while reducing passive stiffness compared with mesenchymal stromal cells. Transplanted epicardial cells formed persistent fibroblast grafts in infarcted hearts. Cotransplantation of hESC-derived epicardial cells and cardiomyocytes doubled graft cardiomyocyte proliferation rates in vivo, resulting in 2.6-fold greater cardiac graft size and simultaneously augmenting graft and host vascularization. Notably, cotransplantation improved systolic function compared with hearts receiving either cardiomyocytes alone, epicardial cells alone or vehicle. The ability of epicardial cells to enhance cardiac graft size and function makes them a promising adjuvant therapeutic for cardiac repair.: This work was supported by the British Heart Foundation (BHF; Grants NH/11/1/28922, G1000847, FS/13/29/30024 and FS/18/46/33663), Oxford-Cambridge Centre for Regenerative Medicine (RM/13/3/30159), the UK Medical Research Council (MRC) and the Cambridge Hospitals National Institute for Health Research Biomedical Research Centre funding (SS), as well as National Institutes of Health Grants P01HL094374, P01GM081619, R01HL12836 and a grant from the Fondation Leducq Transatlantic Network of Excellence (CEM). J.B. was supported by a Cambridge National Institute for Health Research Biomedical Research Centre Cardiovascular Clinical Research Fellowship and subsequently, by a BHF Studentship (Grant FS/13/65/30441). DI received a University of Cambridge Commonwealth Scholarship. LG is supported by BHF Award RM/l3/3/30159 and LPO is funded by a Wellcome Trust Fellowship (203568/Z/16/Z). NF was supported by BHF grants RG/13/14/30314. NL was supported by the Biotechnology and Biological Sciences Research Council (Institute Strategic Programmes BBS/E/B/000C0419 and BBS/E/B/000C0434). SS and MB were supported by the British Heart Foundation Centre for Cardiovascular Research Excellence. Core support was provided by the Wellcome-MRC Cambridge Stem Cell Institute (203151/Z/16/Z), The authors thank Osiris for provision of the primary mesenchymal stem cells (59

    Optimized targeting of polyethylene glycol-stabilized anti-intercellular adhesion molecule 1 oligonucleotide/lipid particles to liver sinusoidal endothelial cells

    No full text
    We prepared polyethylene glycol ( PEG)-stabilized antisense oligonucleotide (ODN)/lipid particles from a lipid mixture including the positively charged amphiphile 1,2-dioleoyl-3-trimethyl-ammoniumpropane ( DOTAP) and anti-intercellular adhesion molecule 1 (ICAM-1) antisense ODN by an extrusion method in the presence of 40% ethanol. These particles were targeted to scavenger receptors on liver endothelial cells by means of covalently coupled polyanionized albumin. Two types of such targeted particles were prepared, one with the albumin coupled to a maleimide group attached to the particle's lipid bilayer and the other with the protein coupled to a maleimide group attached at the distal end of added bilayer-anchored PEG chains. Upon intravenous injection, the ODN particles with bilayer-coupled albumin were cleared from the blood circulation at the same low rate as untargeted particles (<5% in 30 min). By contrast, the distal-end coupled particles were very rapidly cleared from the blood and preferentially taken up by the endothelial cells of the hepatic sinusoid ( 55% of injected dose after 30 min). Despite this substantial endothelial targeting, no consistent inhibition of ICAM-1 expression could be demonstrated in this cell type, either in vivo or in vitro. However, in J774 cells that also express scavenger receptors and ICAM-1, significant down-regulation of ICAM-1 mRNA was achieved with distal-end targeted lipid particles, as determined with real-time RT-PCR. It is concluded that massive delivery of ODN to cell types that express scavenger receptors can be achieved if lipid particles are provided with negatively charged albumin distally attached to bilayer anchored PEG chains

    Targeting of stabilized plasmid lipid particles to hepatocytes in vivo by means of coupled lactoferrin

    No full text
    For non-viral gene delivery we prepared stabilized plasmid lipid particles (SPLPs), to which lactoferrin (LF) was coupled as a hepatocyte specific targeting ligand. LF-SPLPs and untargeted SPLPs labeled with [H-3]cholesteryloleyl-ether were injected into rats. About 87% of the LF-SPLPs were eliminated from the blood within 5 min, while 80% of untargeted SPLPs were still circulating after 2 h. Fifty-two percent of the LF-SPLPs were taken up by hepatocytes, while non-parenchymal liver cells accounted for 16% of the uptake. Despite the efficient targeting of LF-SPLPs to hepatocytes and their capacity to transfect HepG2 and COS-7 cells in vitro, expression of a reporter gene was not detected in vivo. Overall, covalent coupling of LF to SPLPs leads to massive delivery in hepatocytes after systemic administration. However, these LF-SPLPs are not able to transfect these cells in vivo

    Epicardium-derived cells enhance proliferation, cellular maturation and alignment of cardiomyocytes

    No full text
    During heart development, cells from the proepicardial organ spread over the naked heart tube to form the epicardium. From here, epicardium-derived cells (EPDCs) migrate into the myocardium. EPDCs proved to be indispensable for the formation of the ventricular compact zone and myocardial maturation, by largely unknown mechanisms. In this study we investigated in vitro how EPDCs affect cardiomyocyte proliferation, cellular alignment and contraction, as well as the expression and cellular distribution of proteins involved in myocardial maturation. Embryonic quail EPDCs induced proliferation of neonatal mouse cardiomyocytes. This required cell-cell interactions, as proliferation was not observed in transwell cocultures. Western blot analysis showed elevated levels of electrical and mechanical junctions (connexin43, N-cadherin), sarcomeric proteins (Troponin-I, alpha-actinin), extracellular matrix (collagen I and periostin) in cocultures of EPDCs and cardiomyocytes. Immunohistochemistry indicated more membrane-bound expression of Cx43, N-cadherin, the mechanotransduction molecule focal adhesion kinase, and higher expression of the sarcoplasmic reticulum Ca2+ ATPase (SERCA2a). Newly developed software for analysis of directionality in immunofluorescent stainings showed a quantitatively determined enhanced cellular alignment of cardiomyocytes. This was functionally related to increased contraction. The in vitro effects of EPDCs on cardiomyocytes were confirmed in three reciprocal in vivo models for EPDC-depletion (chicken and mice) in which downregulation of myocardial N-cadherin, Cx43, and FAK were observed. In conclusion, direct interaction of EPDCs with cardiomyocytes induced proliferation, correct mechanical and electrical coupling of cardiomyocytes. ECM-deposition and concurrent establishment of cellular array. These findings implicate that EPDCs are ideal candidates as adjuvant cells for cardiomyocyte integration during cardiac (stem) cell therapy. (c) 2010 Elsevier Ltd. All rights reserved.Stem cells & developmental biolog

    Epicardium-derived cells enhance proliferation, cellular maturation and alignment of cardiomyocytes

    No full text
    During heart development, cells from the proepicardial organ spread over the naked heart tube to form the epicardium. From here, epicardium-derived cells (EPDCs) migrate into the myocardium. EPDCs proved to be indispensable for the formation of the ventricular compact zone and myocardial maturation, by largely unknown mechanisms. In this study we investigated in vitro how EPDCs affect cardiomyocyte proliferation, cellular alignment and contraction, as well as the expression and cellular distribution of proteins involved in myocardial maturation. Embryonic quail EPDCs induced proliferation of neonatal mouse cardiomyocytes. This required cell-cell interactions, as proliferation was not observed in transwell cocultures. Western blot analysis showed elevated levels of electrical and mechanical junctions (connexin43, N-cadherin), sarcomeric proteins (Troponin-I, alpha-actinin), extracellular matrix (collagen I and periostin) in cocultures of EPDCs and cardiomyocytes. Immunohistochemistry indicated more membrane-bound expression of Cx43, N-cadherin, the mechanotransduction molecule focal adhesion kinase, and higher expression of the sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a). Newly developed software for analysis of directionality in immunofluorescent stainings showed a quantitatively determined enhanced cellular alignment of cardiomyocytes. This was functionally related to increased contraction. The in vitro effects of EPDCs on cardiomyocytes were confirmed in three reciprocal in vivo models for EPDC-depletion (chicken and mice) in which downregulation of myocardial N-cadherin, Cx43, and FAK were observed. In conclusion, direct interaction of EPDCs with cardiomyocytes induced proliferation, correct mechanical and electrical coupling of cardiomyocytes. ECM-deposition and concurrent establishment of cellular array. These findings implicate that EPDCs are ideal candidates as adjuvant cells for cardiomyocyte integration during cardiac (stem) cell therapy. (c) 2010 Elsevier Ltd. All rights reserved

    Prokineticin receptor-1 signaling promotes Epicardial to Mesenchymal Transition during heart development

    No full text
    The epicardium plays an essential role in coronary artery formation and myocardial development. However, signals controlling the developing epicardium and epicardial-mesenchymal transition (EMT) in the normal and diseased adult heart are studied less rigorously. Here we investigated the role of angiogenic hormone, prokineticin-2 and its receptor PKR1 in the epicardium of developing and adult heart. Genetic ablation of PKR1 in epicardium leads to partial embryonic and postnatal lethality with abnormal heart development. Cardiac developmental defects are manifested in the adult stage as ischemic cardiomyopathy with systolic dysfunction. We discovered that PKR1 regulates epicardial-mesenchymal transition (EMT) for epicardial-derived progenitor cell (EPDC), formation. This event affects at least three consequential steps during heart development: (i) EPDC and cardiomyocyte proliferation involved in thickening of an outer compact ventricular chamber wall, (ii) rhythmicity, (iii) formation of coronary circulation. In isolated embryonic EPDCs, overexpression or activation of PKR1 alters cell morphology and EMT markers via activating Akt signaling. Lack of PKR1 signal in epicardium leads to defective heart development and underlies the origin of congenital heart disease in adult mice. Our mice provide genetic models for congenital dysfunction of the heart and should facilitate studies of both pathogenesis and therapy of cardiac disorders in humans
    corecore