310 research outputs found
Targeting the ubiquitin pathway in lymphoid malignancies
Ubiquitination and related cellular processes control a variety of aspects in human cell biology, and defects in these processes contribute to multiple illnesses. In recent decades, our knowledge about the pathological role of ubiquitination in lymphoid cancers and therapeutic strategies to target the modified ubiquitination system has evolved tremendously. Here we review the altered signalling mechanisms mediated by the aberrant expression of cancer-associated E2s/E3s and deubiquitinating enzymes (DUBs), which result in the hyperactivation of oncoproteins or the frequently allied downregulation of tumour suppressors. We discuss recent highlights pertaining to the several different therapeutic interventions which are currently being evaluated to effectively block abnormal ubiquitin-proteasome pathway and the use of heterobifunctional molecules which recruit the ubiquitination system to degrade or stabilize non-cognate substrates. This review aids in comprehension of ubiquitination aberrance in lymphoid cancers and current targeting strategies and elicits further investigations to deeply understand the link between cellular ubiquitination and lymphoid pathogenesis as well as to ameliorate corresponding treatment interventions
Prognostic Biomarkers for Breast Cancer Metastasis
Breast cancer treatment has improved rapidly through the years, starting from surgery, to hormonal therapy, to targeted therapy. Despite this, tumor metastasis remains the highest cause of breast cancer–related death. The current regime to deter metastasis is through adjuvant therapy, but such therapy frequently yields undesirable side effects. As such, prognostic markers for metastasis are important to stratify patients for adjuvant therapy so as to ameliorate the standard of living of patients with low metastatic potential. So far, only a few well-characterized prognostic biomarkers for metastasis are used in clinics. This chapter will cover both established and novel prognostic biomarkers for breast cancer metastasis and metastatic breast cancer prognosis. The potential of using these biomarkers as predictive biomarkers or new targeted therapy will also be discussed
Aberrant nuclear factor-kappa B activity in acute myeloid Leukemia: from molecular pathogenesis to therapeutic target
The overall survival of patients with acute myeloid leukemia (AML) has not been improved significantly over the last decade. Molecularly targeted agents hold promise to change the therapeutic landscape in AML. The nuclear factor kappa B (NF-κB) controls a plethora of biological process through switching on and off its long list of target genes. In AML, constitutive NF-κB has been detected in 40% of cases and its aberrant activity enable leukemia cells to evade apoptosis and stimulate proliferation. These facts suggest that NF-κB signaling pathway plays a fundamental role in the development of AML and it represents an attractive target for the intervention of AML. This review summarizes our current knowledge of NF-κB signaling transduction including canonical and non-canonical NF-κB pathways. Then we specifically highlight what factors contribute to the aberrant activation of NF-κB activity in AML, followed by an overview of 8 important clinical trials of the first FDA approved proteasome inhibitor, Bortezomib (Velcade®), which is a NF-κB inhibitor too, in combination with other therapeutic agents in patients with AML. Finally, this review discusses the future directions of NF-κB inhibitor in treatment of AML, especially in targeting leukemia stem cells (LSCs)
MicroRNA: Important Player in the Pathobiology of Multiple Myeloma
Recent studies have revealed a pivotal role played by a class of small, noncoding RNAs, microRNA (miRNA), in multiple myeloma (MM), a plasma cell (PC) malignancy causing significant morbidity and mortality. Deregulated miRNA expression in patient’s PCs and plasma has been associated with tumor progression, molecular subtypes, clinical staging, prognosis, and drug response in MM. A number of important oncogenic and tumor suppressor miRNAs have been discovered to regulate important genes and pathways such as p53 and IL6-JAK-STAT signaling. miRNAs may also form complex regulatory circuitry with genetic and epigenetic machineries, the deregulation of which could lead to malignant transformation and progression. The translational potential of miRNAs in the clinic is being increasingly recognized that they could represent novel biomarkers and therapeutic targets. This review comprehensively summarizes current progress in delineating the roles of miRNAs in MM pathobiology and management
Counterproductive effects of anti-CD38 and checkpoint inhibitor for the treatment of NK/T cell lymphoma
IntroductionNatural killer/T cell lymphoma (NKTL) is an aggressive malignancy associated with poor prognosis. This is largely due to limited treatment options, especially for relapsed patients. Immunotherapies like immune checkpoint inhibitors (ICI) and anti-CD38 therapies have shown promising but variable clinical efficacies. Combining these therapies has been suggested to enhance efficacy.MethodsWe conducted a case study on a relapsed NKTL patient treated sequentially with anti-CD38 followed by ICI (anti-PD1) using cytometry analyses.Results and DiscussionOur analysis showed an expected depletion of peripheral CD38+ B cells following anti-CD38 treatment. Further analysis indicated that circulating anti-CD38 retained their function for up to 13 weeks post-administration. Anti-PD1 treatment triggered re-activation and upregulation of CD38 on the T cells. Consequently, these anti-PD1-activated T cells were depleted by residual circulating anti-CD38, rendering the ICI treatment ineffective. Finally, a meta-analysis confirmed this counterproductive effect, showing a reduced efficacy in patients undergoing combination therapy. In conclusion, our findings demonstrate that sequential anti-CD38 followed by anti-PD1 therapy leads to a counterproductive outcome in NKTL patients. This suggests that the treatment sequence is antithetic and warrants re-evaluation for optimizing cancer immunotherapy strategies
Belinostat and panobinostat (HDACI): in vitro and in vivo studies in thyroid cancer
PurposeAdvanced thyroid cancer responds poorly to most therapies. New therapies and combinations are needed. The aim of this study was to examine both in vitro and in vivo activity of two relatively new histone deacetylase inhibitors (HDACIs), belinostat and panobinostat, and a variety of tyrosine kinase inhibitors (TKIs) against a panel of nine human thyroid cancer cell lines.MethodsThe anti-proliferative activity and the effects of HDACIs, TKIs and their combinations on thyroid cancer cells were determined by cytotoxicity assays, microarray and immunoblot analyses. Synergism between HDACIs and TKIs was assessed by the median effects model of Chou-Talalay (Calcusyn(®)).ResultsBelinostat and panobinostat were active against the thyroid cancer cell lines irrespective of their mutational composition, and belinostat was effective in preventing growth of human thyroid cancer xenografts in immunodeficient mice. Further studies showed that both HDACIs induced apoptosis. HDACI also elevated acetylated histone 3, p21(Waf), and PARP, and decreased levels of phosphorylated ERK and AKT (Ser473). RNA assay analysis suggested both HDACIs modulated genes associated with the cell cycle, DNA damage and apoptosis. Most of the TKI (pazopanib, motesanib, sorafenib and dasatinib) were either inactive in vitro or were active only at high doses. However, the novel combinations of either pazopanib or dasatinib TKIs with either belinostat or panobinostat synergistically inhibited cell growth of thyroid cancer cells in vitro.ConclusionsIn summary, these HDACIs either alone or combined with selected TKIs may have a role in treatment of aggressive thyroid cancer
Chromospheric Activity of HAT-P-11: an Unusually Active Planet-Hosting K Star
Kepler photometry of the hot Neptune host star HAT-P-11 suggests that its
spot latitude distribution is comparable to the Sun's near solar maximum. We
search for evidence of an activity cycle in the CaII H & K chromospheric
emission -index with archival Keck/HIRES spectra and observations from the
echelle spectrograph on the ARC 3.5 m Telescope at APO. The chromospheric
emission of HAT-P-11 is consistent with a year activity cycle,
which plateaued near maximum during the Kepler mission. In the cycle that we
observed, the star seemed to spend more time near active maximum than minimum.
We compare the normalized chromospheric emission index of
HAT-P-11 with other stars. HAT-P-11 has unusually strong chromospheric emission
compared to planet-hosting stars of similar effective temperature and rotation
period, perhaps due to tides raised by its planet.Comment: 16 pages, 8 figures; accepted to the Astrophysical Journa
Multiple myeloma-associated chromosomal translocation activates orphan snoRNA ACA11 to suppress oxidative stress
10.1172/JCI63051Journal of Clinical Investigation12282793-2806JCIN
Chromatin interaction neural network (ChINN): a machine learning-based method for predicting chromatin interactions from DNA sequences.
Chromatin interactions play important roles in regulating gene expression. However, the availability of genome-wide chromatin interaction data is limited. We develop a computational method, chromatin interaction neural network (ChINN), to predict chromatin interactions between open chromatin regions using only DNA sequences. ChINN predicts CTCF- and RNA polymerase II-associated and Hi-C chromatin interactions. ChINN shows good across-sample performances and captures various sequence features for chromatin interaction prediction. We apply ChINN to 6 chronic lymphocytic leukemia (CLL) patient samples and a published cohort of 84 CLL open chromatin samples. Our results demonstrate extensive heterogeneity in chromatin interactions among CLL patient samples
- …