7,528 research outputs found
The importance for immunoregulation for long-term cancer control.
Immune checkpoint blockades have recently emerged as a breakthrough treatment for solid tumors showing high response rates and long durability. In melanoma, the combination of ipilimumab with nivolumab showed high efficacy. However, still half the patients do not respond to this treatment. In order to increase the therapeutic ratio in melanoma and other cancers, different approaches are under evaluation. Three relevant questions are at the moment driving the research community: how to maximize benefit while minimizing toxicity; how to better identify patients who are more likely to benefit from immunotherapy; how to convert nonresponders into responders. In this review we summarize the most recent findings and we outline the most likely future challenges
Why is there no queer international theory?
Over the last decade, Queer Studies have become Global Queer Studies, generating significant insights into key international political processes. Yet, the transformation from Queer to Global Queer has left the discipline of International Relations largely unaffected, which begs the question: if Queer Studies has gone global, why has the discipline of International Relations not gone somewhat queer? Or, to put it in Martin Wight’s provocative terms, why is there no Queer International Theory? This article claims that the presumed non-existence of Queer International Theory is an effect of how the discipline of International Relations combines homologization, figuration, and gentrification to code various types of theory as failures in order to manage the conduct of international theorizing in all its forms. This means there are generalizable lessons to be drawn from how the discipline categorizes Queer International Theory out of existence to bring a specific understanding of International Relations into existence
Using Social Media to Promote STEM Education: Matching College Students with Role Models
STEM (Science, Technology, Engineering, and Mathematics) fields have become
increasingly central to U.S. economic competitiveness and growth. The shortage
in the STEM workforce has brought promoting STEM education upfront. The rapid
growth of social media usage provides a unique opportunity to predict users'
real-life identities and interests from online texts and photos. In this paper,
we propose an innovative approach by leveraging social media to promote STEM
education: matching Twitter college student users with diverse LinkedIn STEM
professionals using a ranking algorithm based on the similarities of their
demographics and interests. We share the belief that increasing STEM presence
in the form of introducing career role models who share similar interests and
demographics will inspire students to develop interests in STEM related fields
and emulate their models. Our evaluation on 2,000 real college students
demonstrated the accuracy of our ranking algorithm. We also design a novel
implementation that recommends matched role models to the students.Comment: 16 pages, 8 figures, accepted by ECML/PKDD 2016, Industrial Trac
Topoisomer Differentiation of Molecular Knots by FTICR MS: Lessons from Class II Lasso Peptides
Lasso peptides constitute a class of bioactive peptides sharing a knotted
structure where the C-terminal tail of the peptide is threaded through and
trapped within an N-terminalmacrolactamring. The structural characterization of
lasso structures and differentiation from their unthreaded topoisomers is not
trivial and generally requires the use of complementary biochemical and
spectroscopic methods. Here we investigated two antimicrobial peptides
belonging to the class II lasso peptide family and their corresponding
unthreaded topoisomers: microcin J25 (MccJ25), which is known to yield
two-peptide product ions specific of the lasso structure under collisioninduced
dissociation (CID), and capistruin, for which CID does not permit to
unambiguously assign the lasso structure. The two pairs of topoisomers were
analyzed by electrospray ionization Fourier transform ion cyclotron resonance
mass spectrometry (ESI-FTICR MS) upon CID, infrared multiple photon
dissociation (IRMPD), and electron capture dissociation (ECD). CID and
ECDspectra clearly permitted to differentiate MccJ25 from its non-lasso
topoisomer MccJ25-Icm, while for capistruin, only ECD was informative and
showed different extent of hydrogen migration (formation of c\bullet/z from
c/z\bullet) for the threaded and unthreaded topoisomers. The ECD spectra of the
triply-charged MccJ25 and MccJ25-lcm showed a series of radical b-type product
ions {\eth}b0In{\TH}. We proposed that these ions are specific of
cyclic-branched peptides and result from a dual c/z\bullet and y/b
dissociation, in the ring and in the tail, respectively. This work shows the
potentiality of ECD for structural characterization of peptide topoisomers, as
well as the effect of conformation on hydrogen migration subsequent to electron
capture
Investing in Prevention or Paying for Recovery - Attitudes to Cyber Risk
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Broadly speaking an individual can invest time and effort to avoid becoming victim to a cyber attack and/or they can invest resource in recovering from any attack. We introduce a new game called the pre-vention and recovery game to study this trade-off. We report results from the experimental lab that allow us to categorize different approaches to risk taking. We show that many individuals appear relatively risk loving in that they invest in recovery rather than prevention. We find little difference in behavior between a gain and loss framing
Isotropy of the velocity of light and the Sagnac effect
In this paper, it is shown, using a geometrical approach, the isotropy of the
velocity of light measured in a rotating frame in Minkowski space-time, and it
is verified that this result is compatible with the Sagnac effect. Furthermore,
we find that this problem can be reduced to the solution of geodesic triangles
in a Minkowskian cylinder. A relationship between the problems established on
the cylinder and on the Minkowskian plane is obtained through a local isometry.Comment: LaTeX, 13 pages, 3 eps figures; typos corrected, added references,
minor changes; to appear in "Relativity in Rotating Frames", ed. G. Rizzi G.
and M.L. Ruggiero, Kluwer Academic Publishers, Dordrecht (2003
Granular cell tumour of the soft tissues: a case report and literature review
Granular cell tumours (GCT) of the soft tissues are rare benign tumours but some time may be difficult to distinguish from malignant neoplasms. It is important that clinicians are aware of their existence. We present a new case of GCT of the soft tissues followed by a brief review of literature
Anatomical and biomechanical evaluation of the tension band technique in patellar fractures
Tension band wiring for patellar fractures is common, but some recent reports refer to disadvantages of this approach. Our anatomical and biomechanical study focused on use of tension band techniques in patellar fractures. The anatomy of the patella and tendon insertion was examined with knee magnetic resonance imaging (MRI) and correlated with the technical requirements of the tension band. Tension band wiring over tendinous tissue was simulated and calculated with a cyclic biomechanical test on cow patellae. According to tension band templating on the MRI section, Kirschner wire insertion was needed for the tension band to turn over the tendinous tissue. The tension band became more stable while turning over less tendinous tissue and more adjacent bone surface. Nevertheless, cyclic loading tests indicate that all tension band applications in this study lose their initial stability. Excessive initial compression by the tension band resulted in bending of the Kirschner wire and thus reduction failure. For optimum stabilisation, tension force transfer should be done directly on bone or at least material that protects the tendon would be useful
Performance bounds on compressed sensing with Poisson noise
This paper describes performance bounds for compressed sensing in the
presence of Poisson noise when the underlying signal, a vector of Poisson
intensities, is sparse or compressible (admits a sparse approximation). The
signal-independent and bounded noise models used in the literature to analyze
the performance of compressed sensing do not accurately model the effects of
Poisson noise. However, Poisson noise is an appropriate noise model for a
variety of applications, including low-light imaging, where sensing hardware is
large or expensive, and limiting the number of measurements collected is
important. In this paper, we describe how a feasible positivity-preserving
sensing matrix can be constructed, and then analyze the performance of a
compressed sensing reconstruction approach for Poisson data that minimizes an
objective function consisting of a negative Poisson log likelihood term and a
penalty term which could be used as a measure of signal sparsity.Comment: 5 pages; to appear in Proc. ISIT 200
Electron-Spin Excitation Coupling in an Electron Doped Copper Oxide Superconductor
High-temperature (high-Tc) superconductivity in the copper oxides arises from
electron or hole doping of their antiferromagnetic (AF) insulating parent
compounds. The evolution of the AF phase with doping and its spatial
coexistence with superconductivity are governed by the nature of charge and
spin correlations and provide clues to the mechanism of high-Tc
superconductivity. Here we use a combined neutron scattering and scanning
tunneling spectroscopy (STS) to study the Tc evolution of electron-doped
superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing
process. We find that spin excitations detected by neutron scattering have two
distinct modes that evolve with Tc in a remarkably similar fashion to the
electron tunneling modes in STS. These results demonstrate that
antiferromagnetism and superconductivity compete locally and coexist spatially
on nanometer length scales, and the dominant electron-boson coupling at low
energies originates from the electron-spin excitations.Comment: 30 pages, 12 figures, supplementary information include
- …