245 research outputs found

    Containerless high temperature property measurements

    Get PDF
    Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique

    Plastics in soil description and surveys – practical considerations and field guide

    Get PDF
    A growing evidence base has shown that plastics are widely distributed in soils and could have negative effects on soil functions. However, within international standards for soil description, plastics are handled so far as one part of human-made artefacts. With the ongoing plastic crisis, such a simple classification may no longer be sufficient to provide a satisfactory description of plastics in soils. Based on the latest research on plastics in soils, these foreign components can no longer be understood as relevant only for soils in urban, industrial, traffic, mining and military areas. This perspective therefore aims to suggest a possible approach towards a future and more comprehensive description of plastics in soil characterization. Based on the existing definitions within the international soil description standards, a description concept and a corresponding field guide are proposed. The proposed approach comprises a recent definition of plastics and guidelines for the description of visible plastic residues in soils during field work. Classification approaches are developed for plastics abundance and distribution as well as plastic characteristics. Furthermore, pitfalls during the description, as well as during the extraction of plastics from soils in the field, and further limitations are discussed. Basic soil description during soil surveys or soil mapping, are a strong tool of soil science to derive environmental data sets. The perspective and the field guide presented in this paper are intended to change this circumstance and enable soil scientists to describe plastic residues in soils simple, comparable and adapted to existing standards in future

    Spatial Connections between Microplastics and Heavy Metal Pollution within Floodplain Soils

    Get PDF
    Soils contain an increasing number of different pollutants, which are often released into the environment by human activity. Among the “new” potential pollutants are plastics and microplastics. “Recognized” pollutants such as heavy metals, of geogenic and anthropogenic origin, now meet purely anthropogenic contaminants such as plastic particles. Those can meet especially in floodplain landscapes and floodplain soils, because of their function as a temporary sink for sediments, nutrients, and pollutants. Based on a geospatial sampling approach, we analyzed the soil properties and heavy metal contents (ICP-MS) in soil material and macroplastic particles, and calculated total plastic concentrations (Ptot) from preliminary studies. Those data were used to investigate spatial connections between both groups of pollutants. Our results from the example of the Lahn river catchment show a low-to-moderate contamination of the floodplain soils with heavy metals and a wide distribution of plastic contents up to a depth of two meters. Furthermore, we were able to document heavy metal contents in macroplastic particles. Spatial and statistical correlations between both pollutants were found. Those correlations are mainly expressed by a comparable variability in concentrations across the catchment and in a common accumulation in topsoil and upper soil or sediment layers (0–50 cm). The results indicate comparable deposition conditions of both pollutants in the floodplain system

    Spatial variability in heavy metal concentration in urban pavement joints – a case study

    Get PDF
    Heavy metals are known to be among one of the major environmental pollutants, especially in urban areas, and, as generally known, can pose environmental risks and direct risks to humans. This study deals with the spatial distribution of heavy metals in different pavement joints in the inner city area of Marburg (Hesse, Germany). Pavement joints, defined as the joint between paving stones and filled with different materials, have so far hardly been considered as anthropogenic materials and potential pollution sources in urban areas. Nevertheless, they have an important role as possible sites of infiltration for surface run-off accumulation areas and are therefore a key feature of urban water regimes. In order to investigate the spatial variability in heavy metals in pavement joints, a geospatial sampling approach was carried out on six inner city sampling sites, followed by heavy metal analyses via inductively coupled plasma–mass spectrometry (ICP–MS) and additional pH and organic matter analyses. A first risk assessment of heavy metal pollution from pavement joints was performed. Pavement joints examined consist mainly of basaltic gravel, sands, organic material and anthropogenic artefacts (e.g. glass and plastics), with an average joint size of 0.89 cm and a vertical depth of 2–10 cm. In general, the pavement joint material shows high organic matter loads (average 11.0 % by mass) and neutral to alkaline pH values. Besides high Al and Fe content, the heavy metals Cr, Ni, Cd and Pb are mainly responsible for the contamination of pavement joints. The identified spatial pattern of maximum heavy metal loads in pavement joints could not be attributed solely to traffic emissions, as commonly reported for urban areas. Higher concentrations were detected at run-off accumulation areas (e.g. drainage gutters) and at the lowest sampling points with high drainage accumulation tendencies. Additional Spearman correlation analyses show a clear positive correlation between the run-off accumulation value and calculated exposure factor (ExF; Spearman correlation coefficients (rSP) – 0.80; p<0.00). Further correlation analyses revealed different accumulation and mobility tendencies of heavy metals in pavement joints. Based on sorption processes with humic substances and an overall alkaline pH milieu, especially Cu, Cd and Pb showed a low potential mobility and strong adsorption tendency, which could lead to an accumulation and fixation of heavy metals in pavement joints. The presence of heavy metals in pavement joints poses a direct risk for urban environments and may also affect environments out of urban areas if drainage transports accumulated heavy metals. Finally, we encourage further research to give more attention to this special field of urban anthropogenic materials and potential risks for urban environments. Overall urban geochemical background values, and the consideration of run-off-related transport processes on pavements, are needed to develop effective management strategies of urban pavement soil pollution

    Investigating the dispersal of macro- and microplastics on agricultural fields 30 years after sewage sludge application

    Get PDF
    Plastic contamination of terrestrial ecosystems and arable soils pose potentially negative impacts on several soil functions. Whereas substantial plastic contamination is now traceable in agro-landscapes, often internal-caused by the application of fertilizers such as sewage sludge, questions remain unanswered concerning what happens to the plastic after incorporation. Based on a combined surface and depth sampling approach, including density separation, fuorescence staining and ATR-FTIR or µFTIR analyses, we quantifed macro- and microplastic abundance on two agricultural felds—34 years after the last sewage sludge application. By sub-dividing the study area around sludge application sites, we were able to determine spatial distribution and spreading of plastics. Past sewage sludge application led to a still high density of macroplastics (637.12 items per hectare) on agricultural soil surfaces. Microplastic concentration, measured down to 90 cm depth, ranged from 0.00 to 56.18 particles per kg of dry soil weight. Maximum microplastic concentrations were found in regularly ploughed topsoils. After 34 years without sewage sludge application, macro- and microplastic loads were signifcantly higher on former application areas, compared to surrounding areas without history of direct sewage application. We found that anthropogenic ploughing was mainly responsible for plastic spread, as opposed to natural transport processes like erosion. Furthermore, small-scale lateral to vertical heterogeneous distribution of macro- and microplastics highlights the need to determine appropriate sampling strategies and the modelling of macro- and microplastic transport in soils

    Spatial survey of tephra deposits in the middle Lahn valley (Hesse, Germany)

    Get PDF
    Tephra deposits and especially Laacher See tephra (LST) deposits resulting from the Laacher See eruption (12.9 ka) are an important stratigraphic marker for the Allerød period in central Europe (van den Bogaard and Schmincke, 1995). Within the central German low mountain range (Rhenish Massif and eastern areas) the LST was found within soils (initial deposits, sheltered slope positions) and valleys (relocated deposits) (Bos and Urz, 2003; Hahn and Opp, 2005). The Niederweimar gravel quarry, located on the lower terrace in the middle reach of the Lahn River valley south of Marburg (Hesse, Germany), is known for its high-resolution stratigraphy of Quaternary gravel deposits and late glacial, as well as Holocene, floodplain fines (Lomax et al., 2018). This particular stratigraphy is mainly achieved by the up to 2 m thick LST deposits, which consist of pure LST beds and a multitude of fine LST bands (partly interbedded with black sands or interrupted by clay bands). The origin of the LST in the floodplain is attributed to an extensive deposition (aeolian, directly in the floodplain), as well as later fragmentation of the tephra deposits by surface erosion and renewed deposition of LST from the catchment area through changing river systems (Bos and Urz, 2003; Lomax et al., 2018). The surroundings of the gravel quarry are also rich in archaeological finds reaching more or less continuously from the Mesolithic (11.7 to 7.5 ka) to the Middle Ages (Bos and Urz, 2003; Lomax et al., 2018). Further well-summarized information about the situation within the Niederweimar gravel quarry can be found in Lomax et al. (2018) or on the website of the archaeological survey of Hesse (https://lfd.hessen.de/, last access: 21 March 2021). The evidence of LST in the Lahn valley, as in other valley sediments, is often limited to gravel pits (other larger excavations). These pits and their profiles offer very good insights (e.g. detailed lithostratigraphic description of profiles), but they are always limited to a comparatively small spatial section of the entire floodplain (gravel pit area). Therefore, the objective of the presented study is to provide a spatial survey of LST deposits in the middle Lahn valley, covering the entire floodplain cross section. The following two questions form the focus of the spatial survey. (1) How is the lateral and vertical extension of the LST deposits within the Lahn valley floodplain? (2) Does the spatial distribution provide overarching information about the deposition dynamics of the LST? For this purpose, a transect-based survey with qualitative analysis of LST grains based on density separation and visual identification (stereomicroscope) was applied

    Unified Homogenization Theory for Magnetoinductive and Electromagnetic Waves in Split Ring Metamaterials

    Full text link
    A unified homogenization procedure for split ring metamaterials taking into account time and spatial dispersion is introduced. The procedure is based on two coupled systems of equations. The first one comes from an approximation of the metamaterial as a cubic arrangement of coupled LC circuits, giving the relation between currents and local magnetic field. The second equation comes from macroscopic Maxwell equations, and gives the relation between the macroscopic magnetic field and the average magnetization of the metamaterial. It is shown that electromagnetic and magnetoinductive waves propagating in the metamaterial are obtained from this analysis. Therefore, the proposed time and spatially dispersive permeability accounts for the characterization of the complete spectrum of waves of the metamaterial. Finally, it is shown that the proposed theory is in good quantitative and qualitative agreement with full wave simulations.Comment: 4 pages, 3 figure

    Catchment Soil Properties Affect Metal(loid) Enrichment in Reservoir Sediments of German Low Mountain Regions

    Get PDF
    Sediment management is a fundamental part of reservoir operation, but it is often complicated by metal(loid) enrichment in sediments. Knowledge concerning the sources of potential contaminants is therefore of important significance. To address this issue, the concentrations and the mobile fractions of metal(loid)s were determined in the sediments and the respective catchment areas of six reservoirs. The results indicate that reservoirs generally have a high potential for contaminated sediment accumulation due to preferential deposition of fine particles. The median values of the element-specific enrichment factor (EF) demonstrates slight enrichments of arsenic (EF: 3.4), chromium (EF: 2.8), and vanadium (EF: 2.9) for reservoir sediments. The enrichments of cadmium (EF: 8.2), manganese (EF: 3.9), nickel (EF: 4.8), and zinc (EF: 5.0) are significantly higher. This is enabled by a diffuse element release from the soils into the impounded streams, which is particularly favored by soil acidity. Leaching from the catchment soils partially enriches elements in stream sediments before their fine-grained portions in particular are deposited as reservoir sediment. We assume that this effect is of high relevance especially for reservoirs impounding small streams with forested catchments and weakly acid buffering parent material of soil formation

    Muon-induced background in the EDELWEISS dark matter search

    Full text link
    A dedicated analysis of the muon-induced background in the EDELWEISS dark matter search has been performed on a data set acquired in 2009 and 2010. The total muon flux underground in the Laboratoire Souterrain de Modane (LSM) was measured to be Φμ=(5.4±0.20.9+0.5)\Phi_{\mu}=(5.4\pm 0.2 ^{+0.5}_{-0.9})\,muons/m2^2/d. The modular design of the muon-veto system allows the reconstruction of the muon trajectory and hence the determination of the angular dependent muon flux in LSM. The results are in good agreement with both MC simulations and earlier measurements. Synchronization of the muon-veto system with the phonon and ionization signals of the Ge detector array allowed identification of muon-induced events. Rates for all muon-induced events Γμ=(0.172±0.012)evts/(kgd)\Gamma^{\mu}=(0.172 \pm 0.012)\, \rm{evts}/(\rm{kg \cdot d}) and of WIMP-like events Γμn=0.0080.004+0.005evts/(kgd)\Gamma^{\mu-n} = 0.008^{+0.005}_{-0.004}\, \rm{evts}/(\rm{kg \cdot d}) were extracted. After vetoing, the remaining rate of accepted muon-induced neutrons in the EDELWEISS-II dark matter search was determined to be Γirredμn<6104evts/(kgd)\Gamma^{\mu-n}_{\rm irred} < 6\cdot 10^{-4} \, \rm{evts}/(\rm{kg \cdot d}) at 90%\,C.L. Based on these results, the muon-induced background expectation for an anticipated exposure of 3000\,\kgd\ for EDELWEISS-3 is N3000kgdμn<0.6N^{\mu-n}_{3000 kg\cdot d} < 0.6 events.Comment: 21 pages, 16 figures, Accepted for publication in Astropart. Phy

    Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber

    Full text link
    We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level
    corecore