716 research outputs found
Transfer-free graphene passivation of sub 100 nm thin Pt and PtâCu electrodes for memristive devices
Memristive switches are among the most promising building blocks for future neuromorphic computing. These devices are based on a complex interplay of redox reactions on the nanoscale. Nanoionic phenomena enable non-linear and low-power resistance transition in ultra-short programming times. However, when not controlled, the same electrochemical reactions can result in device degradation and instability over time. Two-dimensional barriers have been suggested to precisely manipulate the nanoionic processes. But fabrication-friendly integration of these materials in memristive devices is challenging.Here we report on a novel process for graphene passivation of thin platinum and platinum/copper electrodes. We also studied the level of defects of graphene after deposition of selected oxides that are relevant for memristive switching
Talc-dominated seafloor deposits reveal a new class of hydrothermal system
The Von Damm Vent Field (VDVF) is located on the flanks of the Mid-Cayman Spreading Centre, 13?km west of the axial rift, within a gabbro and peridotite basement. Unlike any other active vent field, hydrothermal precipitates at the VDVF comprise 85â90% by volume of the magnesium silicate mineral, talc. Hydrothermal fluids vent from a 3-m high, 1-m diameter chimney and other orifices at up to 215?°C with low metal concentrations, intermediate pH (5.8) and high concentrations (667?mmol?kg?1) of chloride relative to seawater. Here we show that the VDVF vent fluid is generated by interaction of seawater with a mafic and ultramafic basement which precipitates talc on mixing with seawater. The heat flux at the VDVF is measured at 487±101?MW, comparable to the most powerful magma-driven hydrothermal systems known, and may represent a significant mode of off-axis oceanic crustal cooling not previously recognized or accounted for in global models
Determination of the QCD color factor ratio CA/CF from the scale dependence of multiplicity in three jet events
I examine the determination of the QCD color factor ratio CA/CF from the
scale evolution of particle multiplicity in e+e- three jet events. I fit an
analytic expression for the multiplicity in three jet events to event samples
generated with QCD multihadronic event generators. I demonstrate that a one
parameter fit of CA/CF yields the expected result CA/CF=2.25 in the limit of
asymptotically large energies if energy conservation is included in the
calculation. In contrast, a two parameter fit of CA/CF and a constant offset to
the gluon jet multiplicity, proposed in a recent study, does not yield
CA/CF=2.25 in this limit. I apply the one parameter fit method to recently
published data of the DELPHI experiment at LEP and determine the effective
value of CA/CF from this technique, at the finite energy of the Z0 boson, to be
1.74+-0.03+-0.10, where the first uncertainty is statistical and the second is
systematic.Comment: 20 pages including 6 figures Version 2 corrects typographical error
in equation (2
Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer
The transfer of chemical vapour deposited (CVD) graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to fully remove and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (â„100nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.We acknowledge funding from EPSRC (Grant No. EP/K016636/1, GRAPHTED) and ERC (Grant No. 279342, InsituNANO). ACV acknowledges the Conacyt Cambridge Scholarship and Roberto Rocca Fellowship. JAA-W acknowledges the support of his Research Fellowships from the Royal Commission for the Exhibition of 1851 and Churchill College, Cambridge. RSW acknowledges a Research Fellowship from St. John's College, Cambridge and a Marie SkĆodowska-Curie Individual Fellowship (Global) under grant ARTIST (no. 656870) from the European Union's Horizon 2020 research and innovation programme
A Monte-Carlo generator for statistical hadronization in high energy e+e- collisions
We present a Monte-Carlo implementation of the Statistical Hadronization
Model in e+e- collisions. The physical scheme is based on the statistical
hadronization of massive clusters produced by the event generator Herwig within
the microcanonical ensemble. We present a preliminary comparison of several
observables with measurements in e+e- collisions at the Z peak. Although a fine
tuning of the model parameters is not carried out, a general good agreement
between its predictions and data is found.Comment: 19 pages, 28 figures, 6 tables. v2: added sections on comparison
between the Statistical Hadronization Model and the Cluster Model and on the
interplay between Herwig cluster splitting algorithm and Statistical
Hadronization Model predictions. Fixed typos and references added. Version
accepted for publication in EPJ
The formation of gold-rich seafloor sulfide deposits: Evidence from the Beebe Hydrothermal Vent Field, Cayman Trough
The Beebe vent field (BVF) in the Cayman Trough has built an auriferous massive sulfide deposit on the ultra-slow spreading mid-Cayman spreading centre. The genesis of auriferous sulfide deposits at mid-ocean ridges is not fully understood, although there is a growing recognition that slow and ultra-slow spreading centres are conducive to gold mineralization. Analysis of hydrothermal precipitates from the BVF indicates that the highest gold contents are present within âbeehive diffusersâ, which have developed a highly porous pyrrhotite framework. The beehive structure allows vent fluids to effuse slowly, while allowing ingress of seawater to cool the fluid. The prevalence of pyrrhotite in the beehive samples, lack of sulfates, association between pyrrhotite and gold grains, and results of thermodynamic modelling, suggests gold precipitation occurred under highly reduced conditions even during mixing with seawater. In contrast, high temperature chimneys, with a single orifice, maintain high temperatures to the primary vent orifice and much of the gold is lost to seawater. Despite this, both chimney types are relatively gold enriched, which points to a further underlying cause for high gold at the BVF such as interaction of hydrothermal fluids with ultramafic lithologies in the basement. The final gold composition of the deposit is partially controlled by loss of gold during mass-wasting of the material, with gold depletion most prevalent in blocks formed at beehive-type chimneys. The BVF demonstrates that the overall gold content of a massive sulfide deposit is the sum of basement, precipitation, and surface processes
Recommended from our members
Encapsulation of graphene transistors and vertical device integration by interface engineering with atomic layer deposited oxide
We demonstrate a simple, scalable approach to achieve encapsulated graphene transistors with negligible gate hysteresis, low doping levels and enhanced mobility compared to as-fabricated devices. We engineer the interface between graphene and atomic layer deposited (ALD) AlO by tailoring the growth parameters to achieve effective device encapsulation whilst enabling the passivation of charge traps in the underlying gate dielectric. We relate the passivation of charge trap states in the vicinity of the graphene to conformal growth of ALD oxide governed by gaseous HO pretreatments. We demonstrate the long term stability of such encapsulation techniques and the resulting insensitivity towards additional lithography steps to enable vertical device integration of graphene for multi-stacked electronics fabrication.This work was supported by the EPSRC (Grant Nos. EP/K016636/1, GRAPHTED and EP/L020963/1) and the ERC (Grant No. 279342, InsituNANO). JAA-W acknowledges a Research Fellowship from Churchill College, Cambridge. JS acknowledges support from NUDT. ZAVV acknowledges funding from ESPRC grant EP/L016087/1. ACV acknowledges the Conacyt Cambridge Scholarship and the Roberto Rocca Fellowship. RW acknowledges EPSRC Doctoral Training Award (EP/M506485/1)
Fast Room-Temperature Detection of Terahertz Quantum Cascade Lasers with Graphene-Loaded Bow-Tie Plasmonic Antenna Arrays
We present a fast room-temperature terahertz detector based on interdigitated bow-tie antennas contacting graphene. Highly efficient photodetection was achieved by using two metals with different work functions as the arms of a bow-tie antenna contacting graphene. Arrays of the bow-ties were fabricated in order to enhance the responsivity and coupling of the incoming light to the detector, realizing an efficient imaging system. The device has been characterized and tested with a terahertz quantum cascade laser emitting in single frequency around 2 THz, yielding a responsivity of âŒ34 ÎŒA/W and a noise-equivalent power of âŒ1.5 Ă 10 W/Hz.R.D., Y.R., and H.E.B. acknowledge financial support from the Engineering and Physical Sciences Research Council (Grant No. EP/J017671/1, Coherent Terahertz Systems). S.H. acknowledges funding from EPSRC (Grant No. EP/K016636/1, GRAPHTED). H.L. and J.A.Z. acknowledge financial support from the EPSRC (Grant No. EP/L019922/1). J.A.A.-W. acknowledges a Research Fellowship from Churchill College, Cambridge. H.J.J. thanks the Royal Commission for the Exhibition of 1851 for her Research Fellowship.This is the final version of the article. It first appeared from American Chemical Society via https://doi.org/10.1021/acsphotonics.6b0040
Multi-band magnetotransport in exfoliated thin films of Cu<i><sub>x</sub></i>Bi<sub>2</sub>Se<sub>3</sub>
We report magnetotransport studies in thin (100nm indicating the presence of topologically protected surface states
Theoretical Aspects of Particle Production
These lectures describe some of the latest data on particle production in
high-energy collisions and compare them with theoretical calculations and
models based on QCD. The main topics covered are: fragmentation functions and
factorization, small-x fragmentation, hadronization models, differences between
quark and gluon fragmentation, current and target fragmentation in deep
inelastic scattering, and heavy quark fragmentation.Comment: 26 pages, 27 figures. Lectures at International Summer School on
Particle Production Spanning MeV and TeV Energies, Nijmegen, The Netherlands,
August 199
- âŠ