183 research outputs found

    Anomalous temperature-induced volume contraction in GeTe

    Get PDF
    The recent surge of interest in phase change materials GeTe, Ge2_2Sb2_2Te5_5, and related compounds motivated us to revisit the structural phase transition in GeTe in more details than was done before. Rhombohedral-to-cubic ferroelectric phase transition in GeTe has been studied by high resolution neutron powder diffraction on a spallation neutron source. We determined the temperature dependence of the structural parameters in a wide temperature range extending from 309 to 973 K. Results of our studies clearly show an anomalous volume contraction of 0.6\% at the phase transition from the rhombohedral to cubic phase. In order to better understand the phase transition and the associated anomalous volume decrease in GeTe we have performed phonon calculations based on the density functional theory. Results of the present investigations are also discussed with respect to the experimental data obtained for single crystals of GeTe

    Vibrational properties and the stability of the KCuF3 phases

    Get PDF
    We report theoretical investigations of the lattice dynamics of KCuF3. Our calculations are based on the generalized gradient approximation and parametrization of Perdew–Burke–Ernzerhof to the density functional theory corrected for on-site Coulomb interaction (GGA + U). Vibrations of the KCuF3 lattice are studied within the harmonic approximation. Energetic stability of tetragonal and orthorhombic polymorphic structures of KCuF3 is analyzed. Our results show that the orthorhombic polymorph is energetically not preferred. The Raman and infrared-active phonon modes in two distinct tetragonal polymorphs of KCuF3 are discussed with respect to the available experimental data. A detailed examination of the phonon densities of states in both tetragonal polymorphic structures of KCuF3 is provided together with discussion on similarities and differences between the vibrational dynamics of two distinct tetragonal lattices of the KCuF3 system.Web of Science2511art. no. 11540

    Strong Effects of Cation Vacancies on the Electronic and Dynamical Properties of FeO

    Full text link
    We report pronounced modifications of electronic and vibrational properties induced in FeO by cation vacancies, obtained within density functional theory incorporating strong local Coulomb interactions at Fe atoms. The insulating gap of FeO is reduced by about 50% due to unoccupied electronic bands introduced by trivalent Fe ions stabilized by cation vacancies. The changes in the electronic structure along with atomic displacements induced by cation vacancies affect strongly phonon dispersions via modified force constants, including those at atoms beyond nearest neighbors of defects. We demonstrate that theoretical phonon dispersions and their densities of states reproduce the results of inelastic neutron and nuclear resonant x-ray scattering experiments \emph{only} when Fe vacancies and Coulomb interaction UU are both included explicitly in \emph{ab initio} simulations, which also suggests that the electron-phonon coupling in FeO is strong.Comment: 5 pages, 4 figure

    Digitization Methods of Grinding Pins for Technological Process Planning

    Get PDF
    The paper presents different techniques for digitizing grinding pins and discusses the use of digitalized pins and the results of measurements in technological process planning (TPP), focusing on the challenges of the digital era. It describes the potential of different measuring devices, taking into account the digitization of a real tool shape into virtual 2D and 3D models. The following methods for measuring grinding pins are presented in the study: contact and non-contact coordinate measurements – performed on coordinate measuring machines (CMM); optical measurements on microscopes (i.e. focus-variation technique); optical measurements using tool presetters; optical measurements with measuring arm; laser micrometer measurements; and laser triangulation sensor measurements. Moreover, the use of testers which are applied in contour measurements is analyzed. On the basis of the presented methods, taking into account their possibilities and limitations, we discuss how the obtained digital data can be used in the planning of technological processes.publishedVersio

    M\"ossbauer studies of spin- and charge-modulations in BaFe2(As1-xPx)2

    Full text link
    The BaFe2(As1-xPx)2 compounds with x = 0 (parent), x = 0.10 (under-doped), x = 0.31, 0.33, 0.53 (superconductors with Tc = 27.3 K, 27.6 K, 13.9 K, respectively) and x = 0.70, 0.77 (over-doped) have been investigated versus temperature using 57Fe M\"ossbauer spectroscopy. Special attention was paid to regions of the spin-density-wave (SDW) antiferromagnetic order, spin-nematic phase, and superconducting transition. The BaFe2(As0.90P0.10)2 compound exhibits a reduced amplitude of SDW as compared to the parent compound and preserved universality class of two-dimensional magnetic planes with one-dimensional spins. The spin-nematic phase region for x = 0.10 is characterized by an incoherent magnetic order. BaFe2(As0.69P0.31)2 shows coexistence of a weak magnetic order and superconductivity due to the vicinity of the quantum critical point. The charge density modulations in the BaFe2(As0.67P0.33)2 and BaFe2(As0.47P0.53)2 superconductors are perturbed near Tc. Pronounced hump of the average quadrupole splitting across superconducting transition is observed for the system with x = 0.33. The phosphorus substitution increases the Debye temperature of the BaFe2(As1-xPx)2 compound. Moreover, experimental electron charge densities at Fe nuclei in this material conclusively show that it should be recognized as a hole-doped system. The measured M\"ossbauer spectral shift and spectral area are not affected by transition to the superconducting state. This indicates that neither the average electron density at Fe nuclei nor the dynamical properties of the Fe-sublattice in BaFe2(As1-xPx)2 are sensitive to the superconducting transition. Theoretical calculations of hyperfine parameters determining the patterns of M\"ossbauer spectra of BaFe2(As1-xPx)2 with x = 0, 0.31, 0.5, and 1.0 are performed within the framework of the density functional theory

    Phonons and Colossal Thermal Expansion Behavior of Ag3Co(CN)6 and Ag3Fe(CN)6

    Full text link
    Recently colossal positive volume thermal expansion has been found in the framework compounds Ag3Co(CN)6 and Ag3Fe(CN)6. Phonon spectra have been measured using the inelastic neutron scattering technique as a function of temperature and pressure. The data has been analyzed using ab-initio calculations. We find that the bonding is very similar in both compounds. At ambient pressure modes in the intermediate frequency part of the vibrational spectra in the Co compound are shifted to slightly higher energies as compared to the Fe compound. The temperature dependence of the phonon spectra gives evidence for large explicit anharmonic contribution to the total anharmonicity for low-energy modes below 5 meV. We found that modes are mainly affected by the change in the size of unit cell, which in turn changes the bond lengths and vibrational frequencies. Thermal expansion has been calculated via the volume dependence of phonon spectra. Our analysis indicates that Ag phonon modes in the energy range from 2 to 5 meV are strongly anharmonic and major contributors to thermal expansion in both compounds. The application of pressure hardens the low-energy part of the phonon spectra involving Ag vibrations and confirms the highly anharmonic nature of these modes.Comment: 19 pages, 14 figures and one tabl

    DIG-MAN: Integration of digital tools into product development and manufacturing education

    Get PDF
    General objectives of PRODEM education. Teaching of product development requires various digital tools. Nowadays, the digital tools usually use computers, which have become a standard element of manufacturing and teaching environments. In this context, an integration of computer-based technologies in manufacturing environments plays the crucial and main role, allowing to enrich, accelerate and integrate different production phases such as product development, design, manufacturing and inspection. Moreover, the digital tools play important role in management of production. According to Wdowik and Ratnayake (2019 paper: Open Access Digital Tool’s Application Potential in Technological Process Planning: SMMEs Perspective, https://doi.org/10.1007/978-3-030-29996-5_36), the digital tools can be divided into several main groups such as: machine tools and technological equipment (MTE), devices (D), internet(intranet)-based tools (I), software (S). The groups are presented in Fig. 1.1. Machine tools and technological equipment group contains all existing machines and devices which are commonly used in manufacturing and inspection phase. The group is used in physical shaping of manufactured products, measurement tasks regarding tools and products, etc. The next group of devices (D) is proposed to separate the newest trends of using mobile and computer-based technologies such as smartphones or tablets and indicate the necessity of increased mobility within production sites. The similar need of separation is in the case of internet(intranet)-based tools which indicate the growing interest in network-based solutions. Hence, D and I groups are proposed in order to underline the significance of mobility and networking. These two groups of the digital tools should also be supported in the nearest future by the use of 5G networks. The last group of software (S) concerns computer software produced for the aims of manufacturing environments. There is also a possibility to assign the defined solutions (e.g. computer programs) to more than one group (e.g. program can be assigned to software and internet-based tools). The main role of tools allocated inside separate groups is to support employees, managers and customers of manufacturing firms focused on abovementioned production phases. The digital tools are being developed in order to increase efficiency of production, quality of manufactured products and accelerate innovation process as well as comfort of work. Nowadays, digital also means mobile. Universities (especially technical), which are focused on higher education and research, have been continuously developing their teaching programmes since the beginning of industry 3.0 era. They need to prepare their alumni for changing environments of manufacturing enterprises and new challenges such as Industry 4.0 era, digitalization, networking, remote work, etc. Most of the teaching environments nowadays, especially those in manufacturing engineering area, are equipped with many digital tools and meet various challenges regarding an adaptation, a maintenance and a final usage of the digital tools. The application of these tools in teaching needs a space, staff and supporting infrastructures. Universities adapt their equipment and infrastructures to local or national needs of enterprises and the teaching content is usually focused on currently used technologies. Furthermore, research activities support teaching process by newly developed innovations. Figure 1.2 presents how different digital tools are used in teaching environments. Teaching environments are divided into four groups: lecture rooms, computer laboratories, manufacturing laboratories and industrial environments. The three groups are characteristic in the case of universities’ infrastructure whilst the fourth one is used for the aims of internships of students or researchers. Nowadays lecture rooms are mainly used for lectures and presentations which require the direct communication and interaction between teachers and students. However, such teaching method could also be replaced by the use of remote teaching (e.g. by the use of e-learning platforms or internet communicators). Unfortunately, remote teaching leads to limited interaction between people. Nonverbal communication is hence limited. Computer laboratories (CLs) usually gather students who solve different problems by the use of software. Most of the CLs enable teachers to display instructions by using projectors. Physical gathering in one room enables verbal and nonverbal communication between teachers and students. Manufacturing laboratories are usually used as the demonstrators of real industrial environments. They are also perfect places for performing of experiments and building the proficiency in using of infrastructure. The role of manufacturing labs can be divided as: • places which demonstrate the real industrial environments, • research sites where new ideas can be developed, improved and tested. Industrial environment has a crucial role in teaching. It enables an enriched student experience by providing real industrial challenges and problems
    corecore