13 research outputs found

    EOS SAR: A new approach

    Get PDF
    Viewgraphs on Earth Observing System (EOS) Synthetic Aperture Radar (SAR) are presented. The goal of the EOS is to develop the modeling and observational capabilities to predict and/or monitor atmospheric, terrestrial, and oceanic processes that are either causing global change or resulting from global change. The EOS SAR goal is to provide important geophysical products to the EOS data set to improve our understanding of the state and functioning of the Earth system. The EOS SAR strategy is to define the instrument requirements based on required input to geophysical algorithms, to provide the processing capability and algorithms to generate such products on the required spatial (global) and temporal (3-5 days) scales, and to provide the spaceborne instrumentation with international partnerships

    The Eos SAR Mission

    Get PDF
    The Eos SAR if a key component of the Eos mission. It is currently being launched on a free flyer in parallel with Eos-A to provide coincident measurements of the Earth's surface over a 15 year time span. This paper provides the latest information on the status of the Eos SAR mission, emphasizes the SAR's role in the overall Eos mission, and compares the Eos SAR under study to the earlier SAR on Eos-B

    Monitoring environmental state of Alaskan forests with AIRSAR

    Get PDF
    During March 1988 and May 1991, the JPL airborne synthetic aperture radar, AIRSAR, collected sets of multi-temporal imagery of the Bonanza Creek Experimental Forest near Fairbanks, Alaska. These data sets consist of series of multi-polarized images collected at P-, L-, and C-bands each over a period of a few days. The AIRSAR campaigns were complemented with extensive ground measurements that included observations of both static canopy characteristics such as forest architecture as well as properties that vary on short term time scales such as canopy dielectric conditions. Observations exist for several stands of deciduous and coniferous species including white spruce (Picea glauca), black spruce (Picea mariana), and balsam poplar (Populus balsamifera). Although the duration of each campaign was fairly short, significant changes in environmental conditions caused notable variations in the physiological state of the canopies. During the 1988 campaign, environmental conditions ranged from unseasonably warm to more normal subfreezing temperatures. This permitted AIRSAR observations of frozen and thawed canopy states. During May 1991, ice jams that occurred along the river caused many stands to flood while the subsequent clearing of the river then allowed the waters to recede, leaving a snow covered ground surface. This allowed observations of several stands during both flooded and nonflooded conditions. Furthermore, the local weather varied from clear sunny days to heavy overcast days with some occurrence of rain. Measurements of leaf water potential indicated that this caused significant variations in canopy water status, allowing SAR observations of water stressed and unstressed trees. Mean backscatter from several stands is examined for the various canopy physiological states. The changes in canopy backscatter that occur as a function of environmental and physiological state are analyzed. Preliminary results of a backscatter signature modeling analysis are presented. The implications of using SAR to monitor canopy phenological state are addressed

    Application of Spaceborne Synthetic Aperture Radar to Monitoring Seasonal Ecological and Hydrologic Processes in Boreal Forest

    Get PDF
    Freezehaw transitions in boreal landscapes drive critical dynamics in ecosystem and hydrologic activity. A capability for accurate, repeated, and reliable monitoring of landscape freezekhaw dynamics would improve our ability to quantify the interannual variability ofboreal hydrology and river runoff/flood dynamics and to assess the period of photosynthetic activity in boreal and arctic ecosystems, thus improving estimates of annual carbon budgets and of the interannual variability of regional carbon fluxes. Results from BOREAS experiments have indicated that the boreal forest has a net annual carbon flux near zero. A first step in assessing and monitoring year-to-year changes in the boreal carbon flux is to determine the annual variation in growing season length. Weapply imagery from the ERS spaceborne Synthetic Aperture Radars (SARs) to estimate landscape freezekhaw dynamics over selected areas of the BOREAS region of Canada. A temporal series of freeze/thaw maps are derived that provide fractional estimates of frozen and thawed landscape. The inferred landscape freezehhaw state is validated against temperature measurements obtained from a distributed temperature monitoring network and from meteorological observations. We examine the relationships of radar-estimated thaw patterns with topography and landcover. SAR-derived timing ofspring thaw is comparred with initiation of streamflow. Ecological process models are used to estimate Net Ecosystem Exchange (NEE) and Net Primary Productivity (NPP) on the landscape scale. Model results are comparred with timing and spatial distribution of freeze and thaw events. As the timing of spring thaw is a major factor influencing the net annual cabon flux, we seek to incorportate the radar-based measure of landscape freezeithaw dynamics as direct input to ecological process models to provide a capability for improved ecosystem carbon flux estimates at regional scales using spaceborne rad

    The Eos SAR Mission

    Get PDF
    The Eos SAR if a key component of the Eos mission. It is currently being launched on a free flyer in parallel with Eos-A to provide coincident measurements of the Earth's surface over a 15 year time span. This paper provides the latest information on the status of the Eos SAR mission, emphasizes the SAR's role in the overall Eos mission, and compares the Eos SAR under study to the earlier SAR on Eos-B

    Application of Spaceborne Scatterometer for Mapping Freeze-Thaw State in Northern Landscapes as a Measure of Ecological and Hydrological Processes

    No full text
    Landscape freeze/thaw transitions coincide with marked shifts in albedo, surface energy and mass exchange, and associated snow dynamics. monitoring landscape freeze/thaw dynamics would improve our ability to quantify the interannual variability of boreal hydrology and river runoff/flood dynamics, The annual duration of frost-free period also bounds the period of photosynthetic activity in borel and arctic regions thus affecting the carbon budget and the interannual variability fo regional carbon fluxes

    BOREAS RSS-17 Dielectric Constant Profile Measurements

    No full text
    The BOREAS RSS-17 team acquired and analyzed imaging radar data from the ESA's ERS-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. This data set consists of dielectric constant profile measurements from selected trees at various BOREAS flux tower sites. The relative dielectric constant was measured at C-band (frequency = 5 GHz) as a function of depth into the trunk of three trees at each site, Measurements were made during April 1994 with an Applied Microwave Corporation field PDP fitted with a 0.358-cm (0.141-inch) diameter coaxial probe tip. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC)

    BOREAS RSS-17 Stem, Soil, and Air Temperature Data

    No full text
    The BOREAS RSS-17 team collected several data sets in support of its research in monitoring and analyzing environmental and phenological states using radar data. This data set consists of tree bole and soil temperature measurements from various BOREAS flux tower sites. Temperatures were measured with thermistors implanted in the hydroconductive tissue of the trunks of several trees at each site and at various depths in the soil. Data were stored on a data logger at intervals of either 1 or 2 hours. The majority of the data were acquired between early 1994 and early 1995. The primary product of this data set is the diurnal stem temperature measurements acquired for selected trees at five BOREAS tower sites. The data are provided in tabular ASCII format. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC)

    BOREAS RSS-17 Xylem Flux Density Measurements at the SSA-OBS Site

    No full text
    As part of its efforts to determine environmental and phenological states from radar imagery, the Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-17 team collected in situ tree xylem flow measurements for one growing season on five Picea mariana (black spruce) trees. The data were collected to obtain information on the temporal and spatial variability in water uptake by trees in the Southern Study Area-Old Black Spruce (SSA-OBS) stand in the BOREAS SSA. Temporally, the data were collected in 30-minute intervals for 120 days from 31 May 1994 until 27 September 1994. The data are stored in tabular ASCII files. The xylem flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884)

    BOREAS RSS-17 1994 ERS-1 Level-3 Freeze/Thaw Backscatter Change Images

    No full text
    The Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-17 team acquired and analyzed imaging radar data from the European Space Agency's (ESA's) European Remote Sensing Satellite (ERS)-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. Two independent transitions corresponding to soil thaw and possible canopy thaw were revealed by the data. The results demonstrated that radar provides an ability to observe thaw transitions at the beginning of the growing season, which in turn helps constrain the length of the growing season. The data set presented here includes change maps derived from radar backscatter images that were mosaicked together to cover the southern BOREAS sites. The image values used for calculating the changes are given relative to the reference mosaic image. The data are stored in binary image format files. The imaging radar data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884)
    corecore