1,363 research outputs found
Bath generated work extraction and inversion-free gain in two-level systems
The spin-boson model, often used in NMR and ESR physics, quantum optics and
spintronics, is considered in a solvable limit to model a spin one-half
particle interacting with a bosonic thermal bath. By applying external pulses
to a non-equilibrium initial state of the spin, work can be extracted from the
thermalized bath. It occurs on the timescale \T_2 inherent to transversal
(`quantum') fluctuations. The work (partly) arises from heat given off by the
surrounding bath, while the spin entropy remains constant during a pulse. This
presents a violation of the Clausius inequality and the Thomson formulation of
the second law (cycles cost work) for the two-level system.
Starting from a fully disordered state, coherence can be induced by employing
the bath. Due to this, a gain from a positive-temperature (inversion-free)
two-level system is shown to be possible.Comment: 4 pages revte
Work extraction in the spin-boson model
We show that work can be extracted from a two-level system (spin) coupled to
a bosonic thermal bath. This is possible due to different initial temperatures
of the spin and the bath, both positive (no spin population inversion) and is
realized by means of a suitable sequence of sharp pulses applied to the spin.
The extracted work can be of the order of the response energy of the bath,
therefore much larger than the energy of the spin. Moreover, the efficiency of
extraction can be very close to its maximum, given by the Carnot bound, at the
same time the overall amount of the extracted work is maximal. Therefore, we
get a finite power at efficiency close to the Carnot bound.
The effect comes from the backreaction of the spin on the bath, and it
survives for a strongly disordered (inhomogeneously broadened) ensemble of
spins. It is connected with generation of coherences during the work-extraction
process, and we derived it in an exactly solvable model. All the necessary
general thermodynamical relations are derived from the first principles of
quantum mechanics and connections are made with processes of lasing without
inversion and with quantum heat engines.Comment: 30 pages, 6 figure
Electron Transport through T-Shaped Double-Dots System
Correlation effects on electron transport through a system of T-shaped
double-dots are investigated, for which only one of the dots is directly
connected to the leads. We evaluate the local density of states and the
conductance by means of the non-crossing approximation at finite temperatures
as well as the slave-boson mean field approximation at zero temperature. It is
found that the dot which is not directly connected to the leads considerably
influences the conductance, making its behavior quite different from the case
of a single-dot system. In particular, we find a novel phenomenon in the Kondo
regime with a small inter-dot coupling, i.e.
Fano-like suppression of the Kondo-mediated conductance, when two dot levels
coincide with each other energetically.Comment: 6 pages,7 figure
Spectroscopic Evidence for an Oxazolone Structure in Anionic b-Type Peptide Fragments
Infrared spectra of anionic b-type fragments generated by collision induced dissociation (CID) from deprotonated peptides are reported. Spectra of the b2 fragments of deprotonated AlaAlaAla and AlaTyrAla have been recorded over the 800–1800 cm–1 spectral range by multiple-photon dissociation (MPD) spectroscopy using an FTICR mass spectrometer in combination with the free electron laser FELIX. Structural characterization of the b-type fragments is accomplished by comparison with density functional theory calculated spectra at the B3LYP/6-31++G(d,p) level for different isomeric structures. Although diketopiperazine structures represent the energetically lowest isomers, the IR spectra suggest an oxazolone structure for the b2 fragments of both peptides. Deprotonation is shown to occur on the oxazolone α-carbon, which leads to a conjugated structure in which the negative charge is practically delocalized over the entire oxazolone ring, providing enhanced gas-phase stability
Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Deep-inelastic positron-proton interactions at low values of Bjorken-x down
to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons
are studied with the H1 experiment at HERA. The inclusive cross section for
pi^0 mesons produced at small angles with respect to the proton remnant (the
forward region) is presented as a function of the transverse momentum and
energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x.
Measurements are also presented of the transverse energy flow in events
containing a forward pi^0 meson. Hadronic final state calculations based on QCD
models implementing different parton evolution schemes are confronted with the
data.Comment: 27 pages, 8 figures and 3 table
Low Q^2 Jet Production at HERA and Virtual Photon Structure
The transition between photoproduction and deep-inelastic scattering is
investigated in jet production at the HERA ep collider, using data collected by
the H1 experiment. Measurements of the differential inclusive jet
cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the
transverse energy and the pseudorapidity of the jets in the virtual
photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3
< y < 0.6. The interpretation of the results in terms of the structure of the
virtual photon is discussed. The data are best described by QCD calculations
which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure
Hadron Production in Diffractive Deep-Inelastic Scattering
Characteristics of hadron production in diffractive deep-inelastic
positron-proton scattering are studied using data collected in 1994 by the H1
experiment at HERA. The following distributions are measured in the
centre-of-mass frame of the photon dissociation system: the hadronic energy
flow, the Feynman-x (x_F) variable for charged particles, the squared
transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a
function of x_F. These distributions are compared with results in the gamma^* p
centre-of-mass frame from inclusive deep-inelastic scattering in the
fixed-target experiment EMC, and also with the predictions of several Monte
Carlo calculations. The data are consistent with a picture in which the
partonic structure of the diffractive exchange is dominated at low Q^2 by hard
gluons.Comment: 16 pages, 6 figures, submitted to Phys. Lett.
Measurement of D* Meson Cross Sections at HERA and Determination of the Gluon Density in the Proton using NLO QCD
With the H1 detector at the ep collider HERA, D* meson production cross
sections have been measured in deep inelastic scattering with four-momentum
transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88
GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe
the differential cross sections within theoretical and experimental
uncertainties. Using these calculations, the NLO gluon momentum distribution in
the proton, x_g g(x_g), has been extracted in the momentum fraction range
7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon
momentum fraction x_g has been obtained from the measured kinematics of the
scattered electron and the D* meson in the final state. The results compare
well with the gluon distribution obtained from the analysis of scaling
violations of the proton structure function F_2.Comment: 27 pages, 9 figures, 2 tables, submitted to Nucl. Phys.
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
- …