16,769 research outputs found

    Larval description and phylogenetic placement of the Australian endemic genus Barretthydrus Lea, 1927 (Coleoptera: Dytiscidae: Hydroporinae: Hydroporini: Sternopriscina)

    Get PDF
    The larvae of the Australian endemic species Barretthydrus tibialis Lea, 1927 and Barretthydrus geminatus Lea, 1927 are described and illustrated for the first time, with detailed morphometric and chaetotaxic analyses of the cephalic capsule, head appendages, legs, last abdominal segment, and urogomphi. A parsimony analysis based on 118 informative larval characteristics of 34 species in all 10 tribes of the subfamily Hydroporinae was conducted using the program TNT. No clear larval morphological synapomorphies support the monophyletic origin of the tribe Hydroporini. Compared to other known larvae of Hydroporini, Barretthydrus Lea is postulated to share a closer phylogenetic relationship with Antiporus Sharp, which reinforces their inclusion in the subtribe Sternopriscina.Fil: Alarie, Yves. Laurentian University. Department of Biology; CanadáFil: Michat, Mariano Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental. Laboratorio de Entomología; ArgentinaFil: Hendrich, L.. Zoologische Staatssammlung Munchen; AlemaniaFil: Watts, Chris H. S.. South Australian Museum; Australi

    Topological Properties of Citation and Metabolic Networks

    Full text link
    Topological properties of "scale-free" networks are investigated by determining their spectral dimensions dSd_S, which reflect a diffusion process in the corresponding graphs. Data bases for citation networks and metabolic networks together with simulation results from the growing network model \cite{barab} are probed. For completeness and comparisons lattice, random, small-world models are also investigated. We find that dSd_S is around 3 for citation and metabolic networks, which is significantly different from the growing network model, for which dSd_S is approximately 7.5. This signals a substantial difference in network topology despite the observed similarities in vertex order distributions. In addition, the diffusion analysis indicates that whereas the citation networks are tree-like in structure, the metabolic networks contain many loops.Comment: 11 pages, 3 figure

    Phase transition in the modified fiber bundle model

    Full text link
    We extend the standard fiber bundle model (FBM) with the local load sharing in such a way that the conservation of the total load is relaxed when an isolated fiber is broken. In this modified FBM in one dimension (1D), it is revealed that the model exhibits a well-defined phase transition at a finite nonzero value of the load, which is in contrast to the standard 1D FBM. The modified FBM defined in the Watts-Strogatz network is also investigated, and found is the existences of two distinct transitions: one discontinuous and the other continuous. The effects of the long-range shortcuts are also discussed.Comment: 7 pages, to appear in Europhys. Let

    Weighted Evolving Networks

    Full text link
    Many biological, ecological and economic systems are best described by weighted networks, as the nodes interact with each other with varying strength. However, most network models studied so far are binary, the link strength being either 0 or 1. In this paper we introduce and investigate the scaling properties of a class of models which assign weights to the links as the network evolves. The combined numerical and analytical approach indicates that asymptotically the total weight distribution converges to the scaling behavior of the connectivity distribution, but this convergence is hampered by strong logarithmic corrections.Comment: 5 pages, 3 figure

    Occasional papers, no. 8

    Get PDF
    The town chosen for examination was King William’s Town, in the Border region of the Cape Province. Dating back over a century and more to the days of the old British Kaffraria, the town has existed long enough to build up an apparently stable population with its own way of life. Today about fourteen-and-a-half thousand souls live in the borough, of whom under seven thousand are Whites. The community lie s in a region of small towns, dominated by the nearby city of East London, which is about 40 miles away on the coast, and provides one of the smaller of the harbours on the eastern coastline of the Republic. King William's Town is a compact, apparently static community, and seems to be typical of many small inland towns in South Africa. Its ways of life and problems probably match those of not a few other towns in the Republic. What types of people live in a small town such as King William’s Town, and what do they think about their community? Where have the people in the town come from, and are they likely to stay on in the community, or leave it? How do they earn their living, and does the town provide a living for the younger generation, or must they leave to seek work elsewhere? These are key questions, involving important aspects of town life, which there search project attempts to answer. The study concentrates on the Whites living in the community, and analyses them in some d e tail. It describes the different types of people to be found in the town, and shows how they earn their living. Attitudes towards life in the town are investigated.Digitised by Rhodes University Library on behalf of the Institute of Social and Economic Research (ISER

    Cavity approach for real variables on diluted graphs and application to synchronization in small-world lattices

    Full text link
    We study XY spin systems on small world lattices for a variety of graph structures, e.g. Poisson and scale-free, superimposed upon a one dimensional chain. In order to solve this model we extend the cavity method in the one pure-state approximation to deal with real-valued dynamical variables. We find that small-world architectures significantly enlarge the region in parameter space where synchronization occurs. We contrast the results of population dynamics performed on a truncated set of cavity fields with Monte Carlo simulations and find excellent agreement. Further, we investigate the appearance of replica symmetry breaking in the spin-glass phase by numerically analyzing the proliferation of pure states in the message passing equations.Comment: 10 pages, 3 figure

    Classes of behavior of small-world networks

    Full text link
    Small-world networks are the focus of recent interest because they appear to circumvent many of the limitations of either random networks or regular lattices as frameworks for the study of interaction networks of complex systems. Here, we report an empirical study of the statistical properties of a variety of diverse real-world networks. We present evidence of the occurrence of three classes of small-world networks: (a) scale-free networks, characterized by a vertex connectivity distribution that decays as a power law; (b) broad-scale networks, characterized by a connectivity distribution that has a power-law regime followed by a sharp cut-off; (c) single-scale networks, characterized by a connectivity distribution with a fast decaying tail. Moreover, we note for the classes of broad-scale and single-scale networks that there are constraints limiting the addition of new links. Our results suggest that the nature of such constraints may be the controlling factor for the emergence of different classes of networks

    Cascade Failure in a Phase Model of Power Grids

    Full text link
    We propose a phase model to study cascade failure in power grids composed of generators and loads. If the power demand is below a critical value, the model system of power grids maintains the standard frequency by feedback control. On the other hand, if the power demand exceeds the critical value, an electric failure occurs via step out (loss of synchronization) or voltage collapse. The two failures are incorporated as two removal rules of generator nodes and load nodes. We perform direct numerical simulation of the phase model on a scale-free network and compare the results with a mean-field approximation.Comment: 7 pages, 2 figure

    Diffusive transport in networks built of containers and tubes

    Full text link
    We developed analytical and numerical methods to study a transport of non-interacting particles in large networks consisting of M d-dimensional containers C_1,...,C_M with radii R_i linked together by tubes of length l_{ij} and radii a_{ij} where i,j=1,2,...,M. Tubes may join directly with each other forming junctions. It is possible that some links are absent. Instead of solving the diffusion equation for the full problem we formulated an approach that is computationally more efficient. We derived a set of rate equations that govern the time dependence of the number of particles in each container N_1(t),N_2(t),...,N_M(t). In such a way the complicated transport problem is reduced to a set of M first order integro-differential equations in time, which can be solved efficiently by the algorithm presented here. The workings of the method have been demonstrated on a couple of examples: networks involving three, four and seven containers, and one network with a three-point junction. Already simple networks with relatively few containers exhibit interesting transport behavior. For example, we showed that it is possible to adjust the geometry of the networks so that the particle concentration varies in time in a wave-like manner. Such behavior deviates from simple exponential growth and decay occurring in the two container system.Comment: 21 pages, 18 figures, REVTEX4; new figure added, reduced emphasis on graph theory, additional discussion added (computational cost, one dimensional tubes

    Community Aliveness: Discovering Interaction Decay Patterns in Online Social Communities

    Full text link
    Online Social Communities (OSCs) provide a medium for connecting people, sharing news, eliciting information, and finding jobs, among others. The dynamics of the interaction among the members of OSCs is not always growth dynamics. Instead, a decay\textit{decay} or inactivity\textit{inactivity} dynamics often happens, which makes an OSC obsolete. Understanding the behavior and the characteristics of the members of an inactive community help to sustain the growth dynamics of these communities and, possibly, prevents them from being out of service. In this work, we provide two prediction models for predicting the interaction decay of community members, namely: a Simple Threshold Model (STM) and a supervised machine learning classification framework. We conducted evaluation experiments for our prediction models supported by a ground truth\textit{ground truth} of decayed communities extracted from the StackExchange platform. The results of the experiments revealed that it is possible, with satisfactory prediction performance in terms of the F1-score and the accuracy, to predict the decay of the activity of the members of these communities using network-based attributes and network-exogenous attributes of the members. The upper bound of the prediction performance of the methods we used is 0.910.91 and 0.830.83 for the F1-score and the accuracy, respectively. These results indicate that network-based attributes are correlated with the activity of the members and that we can find decay patterns in terms of these attributes. The results also showed that the structure of the decayed communities can be used to support the alive communities by discovering inactive members.Comment: pre-print for the 4th European Network Intelligence Conference - 11-12 September 2017 Duisburg, German
    • …
    corecore