42,404 research outputs found
Are Business Cycles All Alike?
This paper examines two questions. The first is whether economic fluctuations-business cycles-are due to an accumulation of nall shocks or instead mostly to infrequent large shocks. The paper concludes that neither of these two extreme views accurately characterize fluctuations. The second question is whether fluctuations are due mostly to one source of shocks, for example monetary, or instead to many sources. The paper concludes that evidence strongly supports the hypothesis of many, about equally important, sources of shocks.To analyze the empirical evidence and to reach these conclusions, the paper uses two different statistical approaches. The first is estimation ofa structural model, using a set of just identifying restrictions. The secondis non-structural and may be described as a formalization of the Burns Mitchell techniques. Both approaches are somewhat novel and should be of independent interest.
Evaluation of wet tantalum capacitors after exposure to extended periods of ripple current, volume 1
The application of tantalum capacitors in the Viking Lander includes both dc voltage and ripple current electrical stress, high temperature during nonoperating times (sterilization), and high vibration and shock loads. The capacitors must survive these severe environments without any degradation if reliable performance is to be achieved. A test program was established to evaluate both wet-slug tantalum and wet-foil capacitors under conditions accurately duplicating actual Viking applications. Test results of the electrical performance characteristics during extended periods of ripple current, the characteristics of the internal silver migration as a function for extended periods of ripple current, and the existence of any memory characteristics are presented
The biomechanical function of periodontal ligament fibres in orthodontic tooth movement
Orthodontic tooth movement occurs as a result of resorption and formation of the alveolar bone due to an applied load, but the stimulus responsible for triggering orthodontic tooth movement remains the subject of debate. It has been suggested that the periodontal ligament (PDL) plays a key role. However, the mechanical function of the PDL in orthodontic tooth movement is not well understood as most mechanical models of the PDL to date have ignored the fibrous structure of the PDL. In this study we use finite element (FE) analysis to investigate the strains in the alveolar bone due to occlusal and orthodontic loads when PDL is modelled as a fibrous structure as compared to modelling PDL as a layer of solid material. The results show that the tension-only nature of the fibres essentially suspends the tooth in the tooth socket and their inclusion in FE models makes a significant difference to both the magnitude and distribution of strains produced in the surrounding bone. The results indicate that the PDL fibres have a very important role in load transfer between the teeth and alveolar bone and should be considered in FE studies investigating the biomechanics of orthodontic tooth movement. © 2014 McCormack et al
Materials technology assessment for stirling engines
A materials technology assessment of high temperature components in the improved (metal) and advanced (ceramic) Stirling engines was undertaken to evaluate the current state-of-the-art of metals and ceramics, identify materials research and development required to support the development of automotive Stirling engines, and to recommend materials technology programs to assure material readiness concurrent with engine system development programs. The most critical component for each engine is identified and some of the material problem areas are discussed
Microscopic resolution broadband dielectric spectroscopy
Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin
Spectra of Maser Radiation from a Turbulent, Circumnuclear Accretion Disk. III. Circular polarization
Calculations are performed for the circular polarization of maser radiation
from a turbulent, Keplerian disk that is intended to represent the sub-parsec
disk at the nucleus of the galaxy NGC4258. The polarization in the calculations
is a result of the Zeeman effect in the regime in which the Zeeman splitting is
much less than the spectral linebreadth. Plausible configurations for turbulent
magnetic and velocity fields in the disk are created by statistical methods.
This turbulence, along with the Keplerian velocity gradients and the blending
of the three hyperfine components to form the masing
transition of water, are key ingredients in determining the appearance of the
polarized spectra that are calculated. These spectra are quite different from
the polarized spectra that would be expected for a two-level transition where
there is no hyperfine structure. The effect of the hyperfine structure on the
polarization is most striking in the calculations for the maser emission that
represents the central (or systemic) features of NGC4258. Information about
magnetic fields is inferred from observations for polarized maser radiation and
bears on the structure of accretion disks.Comment: Latex, uses aastex, eucal, to be published in the Astrophysical
Journa
Characterising exo-ringsystems around fast-rotating stars using the Rossiter-McLaughlin effect
Planetary rings produce a distinct shape distortion in transit lightcurves.
However, to accurately model such lightcurves the observations need to cover
the entire transit, especially ingress and egress, as well as an out-of-transit
baseline. Such observations can be challenging for long period planets, where
the transits may last for over a day. Planetary rings will also impact the
shape of absorption lines in the stellar spectrum, as the planet and rings
cover different parts of the rotating star (the Rossiter-McLaughlin effect).
These line-profile distortions depend on the size, structure, opacity,
obliquity and sky projected angle of the ring system. For slow rotating stars,
this mainly impacts the amplitude of the induced velocity shift, however, for
fast rotating stars the large velocity gradient across the star allows the line
distortion to be resolved, enabling direct determination of the ring
parameters. We demonstrate that by modeling these distortions we can recover
ring system parameters (sky-projected angle, obliquity and size) using only a
small part of the transit. Substructure in the rings, e.g. gaps, can be
recovered if the width of the features () relative to the size of the
star is similar to the intrinsic velocity resolution (set by the width of the
local stellar profile, ) relative to the stellar rotation velocity (
sin, i.e. sin/). This opens up a new
way to study the ring systems around planets with long orbital periods, where
observations of the full transit, covering the ingress and egress, are not
always feasible.Comment: Accepted for publication in MNRA
- …