22 research outputs found

    The bispectrum and 21-cm foregrounds during the Epoch of Reionization

    Get PDF
    Numerous studies have established the theoretical potential of the 21-cm bispectrum to boost our understanding of the Epoch of Reionization (EoR). We take a first look at the impact of foregrounds (FGs) and instrumental effects on the 21-cm bispectrum and our ability to measure it. Unlike the power spectrum for which (in the absence of instrumental effects) there is a window clear of smooth-spectrum FGs in which it may be detectable, there is no such 'EoR window' for the bispectrum. For the triangle configurations and scales we consider, the EoR structures are completely swamped by those of the FGs, and the EoR + FG bispectrum is entirely dominated by that of the FGs. By applying a rectangular window function on the sky combined with a Blackman-Nuttall filter along the frequency axis, we find that spectral, or in our case scale, leakage (caused by FFTing non-periodic data) suppresses the FG contribution so that cross-terms of the EoR and FGs dominate. While difficult to interpret, these findings motivate future studies to investigate whether filtering can be used to extract information about the EoR from the 21-cm bispectrum. We also find that there is potential for instrumental effects to seriously corrupt the bispectrum. FG removal using GMCA (generalized morphological component analysis) is found to recover the EoR bispectrum to a reasonable level of accuracy for many configurations. Further studies are necessary to understand the error and/or bias associated with FG removal before the 21-cm bispectrum can be practically applied in analysis of future data

    Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments

    Get PDF
    Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor

    Interactions between arbuscular mycorrhizal fungi and intraspecific competition affect size and size inequality of Plantago lanceolata L.

    Get PDF
    Intraspecific competition causes decreases in plant size and increases in size inequality. Arbuscular mycorrhizas usually increase the size and inequality of non-competing plants, but mycorrhizal effects often disappear when plants begin competing. We hypothesized that mycorrhizal effects on size inequality would be determined by the experimental conditions, and conducted simultaneous field and glasshouse experiments to investigate how AM fungi and intraspecific competition determine size inequality in Plantago lanceolata. 2 As predicted, plant size was reduced when plants were competing, in both field and controlled conditions. However, size inequality was unexpectedly reduced by competition. Plants may have competed in a symmetric fashion, probably for nutrients, rather than the more common situation, in which plant competition is strongly asymmetric. 3 Mycorrhizas had no effect on plant size or size inequality in competing plants in either field or controlled conditions, possibly because competition for nutrients was intense and negated any benefit the fungi could provide. 4 The effects of mycorrhizas on non-competing plants were also unexpected. In field-grown plants, AM fungi increased plant size, but decreased size inequality: mycorrhizal plants were more even in size, with few very small individuals. In glasshouse conditions, mycorrhizal colonization was extremely high, and was generally antagonistic, causing a reduction in plant size. Here, however, mycorrhizas caused an increase in size inequality, supporting our original hypothesis. This was because most plants were heavily colonized and small, but a few had low levels of colonization and grew relatively large. 5 This study has important implications for understanding the forces that structure plant communities. AM fungi can have a variety of effects on size inequality and thus potentially important influences on long-term plant population dynamics, by affecting the genetic contribution of individuals to the next generation. However, these effects differ, depending on whether plants are competing or not, the degree of mycorrhizal colonization and the responsiveness of the plant to different colonization densities

    Sociodemographic differences in diabetic retinopathy screening; using patient-level primary care data for health equity audit

    No full text
    Background: the prevalence of diabetes is increasing worldwide and there is inequality in the distribution of diabetic complications. Diabetic retinopathy is the leading cause of blindness in adults of working age in the UK, and certain risk factors are recognized. Retinopathy screening in the UK involves annual digital retinal photography and image grading. Auditing equity in retinopathy screening poses unique challenges, and screening program data are often incomplete for variables relevant to equity. Using two sources of patient-level primary care data, we conducted a health equity audit comparing the access and uptake of screening between groups of people with diabetes in each of three screening programs covering this area of southern England.Methods: a patient-level dataset using data from general practices and a combined health record was used to compare dimensions of equity (gender, age, length of time since diabetes diagnosis, type of diabetes, presence of hypertension, socioeconomic deprivation, ethnicity, and screening program) between people with and without a record of retinopathy screening within three years in Hampshire and the Isle of Wight, UK.Results: anonymized data for 70,004 people with diabetes were obtained from 205 (88%) general practices. In total, 62,836 people (89.8%) had a record of screening within three years and 7168 (10.2%) did not. Lower uptake of screening was independently associated with the youngest and oldest age groups (compared with 50–79-year-olds), recent diabetes diagnosis, and deprived areas. Diagnosed hypertension was positively associated with screening.Conclusion: evaluating equity in screening programs is important to help reduce inequalities. We found evidence of inequity in access and uptake of retinopathy screening. Primary care data contained more information than screening program data. Using a combined health record was more efficient than obtaining data directly from general practices, but data were incomplete for deprivation measures at the time of this audit. Our audit informed subsequent efforts to improve equity in local diabetic retinopathy screening service
    corecore