1,586 research outputs found

    A randomized controlled trial of anesthesia guided by bispectral index versus standard care: Effects on cognition

    Full text link
    © 2019 AANA Publishing Inc. All rights reserved. Postoperative cognitive dysfunction, a subtle deterioration of cognitive function after exposure to anesthetics, is reported in 10% to 50% of surgical cases. Delivery of excessive inhalation anesthetics based on minimum alveolar concentration produces greater deep hypnotic times, which may contribute to postoperative cognitive dysfunction. This study tested the impact on cognitive function of balanced anesthetic using electroencephalographic (EEG) guidance vs usual anesthesia. We studied 88 surgical patients: 45 randomly assigned to balanced anesthetic technique with EEG guidance and 43 to standard treatment. Cognitive function was evaluated with the Cambridge Neuropsychological Test Automated Battery-Mild Cognitive Impairment at 3 intervals (preoperatively, 3-5 days postoperatively, and 3-5 months postoperatively). Additionally, 37 age- and sex-matched individuals not undergoing surgery or anesthesia were evaluated at the same intervals. Better outcomes were seen in the intervention group compared with usual care in the short-term/visual memory cognitive domain (P = .02) at 3 to 5 days, but not at 3 to 5 months. Delivery of anesthesia using EEG monitoring systems can reduce cumulative deep hypnotic time without negatively affecting patient physiologic stress, surgical conditions, or cognitive function. Our findings provide data to support optimal anesthetic approaches to improve cognitive function after anesthesia with volatile anesthetics

    Anti-malarial prescriptions in three health care facilities after the emergence of chloroquine resistance in Niakhar, Senegal (1992–2004)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the rural zone of Niakhar in Senegal, the first therapeutic failures for chloroquine (CQ) were observed in 1992. In 2003, the national policy regarding first-line treatment of uncomplicated malaria was modified, replacing CQ by a transitory bi-therapy amodiaquine/sulphadoxine-pyrimethamine (AQ/SP), before the implementation of artemisinin-based combination therapy (ACT) in 2006.</p> <p>The aims of the study were to assess the evolution of anti-malarial prescriptions in three health care facilities between 1992 and 2004, in parallel with increasing CQ resistance in the region.</p> <p>Methods</p> <p>The study was conducted in the area of Niakhar, a demographic surveillance site located in a sahelo-sudanese region of Senegal, with mesoendemic and seasonal malaria transmission. Health records of two public health centres and a private catholic dispensary were collected retrospectively to cover the period 1992–2004.</p> <p>Results</p> <p>Records included 110,093 consultations and 292,965 prescribed treatments. Twenty-five percent of treatments were anti-malarials, prescribed to 49% of patients. They were delivered all year long, but especially during the rainy season, and 20% of patients with no clinical malaria diagnosis received anti-malarials. Chloroquine and quinine represented respectively 55.7% and 34.6% of prescribed anti-malarials. Overall, chloroquine prescriptions rose from 1992 to 2000, in parallel with clinical malaria; then the CQ prescription rate decreased from 2000 and was concomitant with the rise of SP and the persistence of quinine use. AQ and SP were mainly used as bi-therapy after 2003, at the time of national treatment policy change.</p> <p>Conclusion</p> <p>The results show the overall level of anti-malarial prescription in the study area for a considerable number of patients over a large period of time. Even though resistance to CQ rapidly increased from 1992 to 2001, no change in CQ prescription was observed until the early 2000s, possibly due to the absence of an obvious decrease in CQ effectiveness, a lack of therapeutic options or a blind follow-up of national guidelines.</p

    Ancestry of the Iban Is Predominantly Southeast Asian: Genetic Evidence from Autosomal, Mitochondrial, and Y Chromosomes

    Get PDF
    Humans reached present-day Island Southeast Asia (ISEA) in one of the first major human migrations out of Africa. Population movements in the millennia following this initial settlement are thought to have greatly influenced the genetic makeup of current inhabitants, yet the extent attributed to different events is not clear. Recent studies suggest that south-to-north gene flow largely influenced present-day patterns of genetic variation in Southeast Asian populations and that late Pleistocene and early Holocene migrations from Southeast Asia are responsible for a substantial proportion of ISEA ancestry. Archaeological and linguistic evidence suggests that the ancestors of present-day inhabitants came mainly from north-to-south migrations from Taiwan and throughout ISEA approximately 4,000 years ago. We report a large-scale genetic analysis of human variation in the Iban population from the Malaysian state of Sarawak in northwestern Borneo, located in the center of ISEA. Genome-wide single-nucleotide polymorphism (SNP) markers analyzed here suggest that the Iban exhibit greatest genetic similarity to Indonesian and mainland Southeast Asian populations. The most common non-recombining Y (NRY) and mitochondrial (mt) DNA haplogroups present in the Iban are associated with populations of Southeast Asia. We conclude that migrations from Southeast Asia made a large contribution to Iban ancestry, although evidence of potential gene flow from Taiwan is also seen in uniparentally inherited marker data

    Active Nuclear Receptors Exhibit Highly Correlated AF-2 Domain Motions

    Get PDF
    Nuclear receptor ligand binding domains (LBDs) convert ligand binding events into changes in gene expression by recruiting transcriptional coregulators to a conserved activation function-2 (AF-2) surface. While most nuclear receptor LBDs form homo- or heterodimers, the human nuclear receptor pregnane X receptor (PXR) forms a unique and essential homodimer and is proposed to assemble into a functional heterotetramer with the retinoid X receptor (RXR). How the homodimer interface, which is located 30 Å from the AF-2, would affect function at this critical surface has remained unclear. By using 20- to 30-ns molecular dynamics simulations on PXR in various oligomerization states, we observed a remarkably high degree of correlated motion in the PXR–RXR heterotetramer, most notably in the four helices that create the AF-2 domain. The function of such correlation may be to create “active-capable” receptor complexes that are ready to bind to transcriptional coactivators. Indeed, we found in additional simulations that active-capable receptor complexes involving other orphan or steroid nuclear receptors also exhibit highly correlated AF-2 domain motions. We further propose a mechanism for the transmission of long-range motions through the nuclear receptor LBD to the AF-2 surface. Taken together, our findings indicate that long-range motions within the LBD scaffold are critical to nuclear receptor function by promoting a mobile AF-2 state ready to bind coactivators

    Reliability of goniometric measurements in children with cerebral palsy: A comparative analysis of universal goniometer and electronic inclinometer. A pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Even though technological progress has provided us with more and more sophisticated equipment for making goniometric measurements, the most commonly used clinical tools are still the universal goniometer and, to a lesser extent, the inclinometer. There is, however, no published study so far that uses an inclinometer for measurements in children with cerebral palsy (CP). The objective of this study was two-fold: to independently assess the intra and inter-examiner reliability for measuring the hip abduction range of motion in children with CP using two different instruments, the universal two-axis goniometer and electronic inclinometer. A pool of 5 examiners with different levels of experience as paediatric physiotherapists participated. The study did not compare both instruments because the measurement procedure and the hip position were different for each.</p> <p>Methods</p> <p>A prospective, observational study of goniometery was carried out with 14 lower extremities of 7 children with spastic CP. The inclinometer study was carried out with 8 lower extremities of 4 children with spastic CP. This study was divided into two independent parts: a study of the reliability of the hip abduction range of motion measured with a universal goniometer (hip at 0° flexion) and with an electronic inclinometer (hip at 90° flexion). The Intraclass Correlation Coefficient (ICC) was calculated to analyse intra and inter-examiner agreement for each instrument.</p> <p>Results</p> <p>For the goniometer, the intra-examiner reliability was excellent (>0.80), while the inter-examiner reliability was low (0.375 and 0.475). For the inclinometer, both the intra-examiner (0.850-0.975) and inter-examiner reliability were excellent (0.965 and 0.979).</p> <p>Conclusions</p> <p>The inter-examiner reliability for goniometric measurement of hip abduction in children with CP was low, in keeping with other results found in previous publications. The inclinometer has proved to be a highly reliable tool for measuring the hip abduction range of motion in children with CP, which opens up new possibilities in this field, despite having some measurement limitations.</p

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels. RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c. CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c

    Genomic risk prediction of coronary artery disease in nearly 500,000 adults: implications for early screening and primary prevention

    Get PDF
    Background Coronary artery disease (CAD) has substantial heritability and a polygenic architecture; however, genomic risk scores have not yet leveraged the totality of genetic information available nor been externally tested at population-scale to show potential utility in primary prevention. Methods Using a meta-analytic approach to combine large-scale genome-wide and targeted genetic association data, we developed a new genomic risk score for CAD (metaGRS), consisting of 1.7 million genetic variants. We externally tested metaGRS, individually and in combination with available conventional risk factors, in 22,242 CAD cases and 460,387 non-cases from UK Biobank. Findings In UK Biobank, a standard deviation increase in metaGRS had a hazard ratio (HR) of 1.71 (95% CI 1.68–1.73) for CAD, greater than any other externally tested genetic risk score. Individuals in the top 20% of the metaGRS distribution had a HR of 4.17 (95% CI 3.97–4.38) compared with those in the bottom 20%. The metaGRS had higher C-index (C=0.623, 95% CI 0.615–0.631) for incident CAD than any of four conventional factors (smoking, diabetes, hypertension, and body mass index), and addition of the metaGRS to a model of conventional risk factors increased C-index by 3.7%. In individuals on lipid-lowering or anti-hypertensive medications at recruitment, metaGRS hazard for incident CAD was significantly but only partially attenuated with HR of 2.83 (95% CI 2.61– 3.07) between the top and bottom 20% of the metaGRS distribution. Interpretation Recent genetic association studies have yielded enough information to meaningfully stratify individuals using the metaGRS for CAD risk in both early and later life, thus enabling targeted primary intervention in combination with conventional risk factors. The metaGRS effect was partially attenuated by lipid and blood pressure-lowering medication, however other prevention strategies will be required to fully benefit from earlier genomic risk stratification. Funding National Health and Medical Research Council of Australia, British Heart Foundation, Australian Heart Foundation.This study was supported by funding from National Health and Medical Research Council (NHMRC) grant APP1062227. Supported in part by the Victorian Government’s OIS Program. M.I. was supported by an NHMRC and Australian Heart Foundation Career Development Fellowship (no. 1061435). G.A. was supported by an NHMRC Early Career Fellowship (no. 1090462). N.J.S., C.P.N. and B.K. are supported by the British Heart Foundation and N.J.S. is a NIHR Senior Investigator. R.S.P. is supported by the British Heart Foundation (FS/14/76/30933). The MRC/BHF Cardiovascular Epidemiology Unit is supported by the UK Medical Research Council [MR/L003120/1], British Heart Foundation [RG/13/13/30194], and UK National Institute for Health Research Cambridge Biomedical Research Centre. J.D. is a British Heart Foundation Professor and NIHR Senior Investigator

    The Impact of Spatial Incongruence on an Auditory-Visual Illusion

    Get PDF
    The sound-induced flash illusion is an auditory-visual illusion--when a single flash is presented along with two or more beeps, observers report seeing two or more flashes. Previous research has shown that the illusion gradually disappears as the temporal delay between auditory and visual stimuli increases, suggesting that the illusion is consistent with existing temporal rules of neural activation in the superior colliculus to multisensory stimuli. However little is known about the effect of spatial incongruence, and whether the illusion follows the corresponding spatial rule. If the illusion occurs less strongly when auditory and visual stimuli are separated, then integrative processes supporting the illusion must be strongly dependant on spatial congruence. In this case, the illusion would be consistent with both the spatial and temporal rules describing response properties of multisensory neurons in the superior colliculus.status: publishe

    A critical base pair in k-turns that confers folding characteristics and correlates with biological function

    Get PDF
    Kink turns (k-turns) are widespread elements in RNA that mediate tertiary contacts by kinking the helical axis. We have found that the ability of k-turns to undergo ion-induced folding is conferred by a single base pair that follows the conserved A·G pairs, that is, the 3b·3n position. A Watson–Crick pair leads to an inability to fold in metal ions alone, while 3n=G or 3b=C (but not both) permits folding. Crystallographic study reveals two hydrated metal ions coordinated to O6 of G3n and G2n of Kt-7. Removal of either atom impairs Mg(2+)-induced folding in solution. While SAM-I riboswitches have 3b·3n sequences that would predispose them to ion-induced folding, U4 snRNA are strongly biased to an inability to such folding. Thus riboswitch sequences allow folding to occur independently of protein binding, while U4 should remain unfolded until bound by protein. The empirical rules deduced for k-turn folding have strong predictive value
    corecore