386 research outputs found
Fixed Points of Hopfield Type Neural Networks
The set of the fixed points of the Hopfield type network is under
investigation. The connection matrix of the network is constructed according to
the Hebb rule from the set of memorized patterns which are treated as distorted
copies of the standard-vector. It is found that the dependence of the set of
the fixed points on the value of the distortion parameter can be described
analytically. The obtained results are interpreted in the terms of neural
networks and the Ising model.Comment: RevTEX, 19 pages, 2 Postscript figures, the full version of the
earler brief report (cond-mat/9901251
On the center of mass of Ising vectors
We show that the center of mass of Ising vectors that obey some simple
constraints, is again an Ising vector.Comment: 8 pages, 3 figures, LaTeX; Claims in connection with disordered
systems have been withdrawn; More detailed description of the simulations;
Inset added to figure
Selection of Australian Root Nodule Bacteria for Broad-Scale Inoculation of Native Legumes
The unique and diverse native Australian perennial legumes are under current investigation for use as pastures in Australian agriculture. Identification of root nodule bacteria (RNB) that can fix nitrogen effectively for the plant is a critical factor for the success of a legume species in agriculture (Howieson et al., 2000). Some legumes under investigation are relatively promiscuous (Lange, 1961). This trait may allow the development of a single, broad-scale inoculant that could allow inoculation of multiple species of agricultural importance, whilst more effective, specific RNB are developed in time. Aimed to identify strains that can form effective symbioses with several native legume species of potential interest to agriculture, this experiment screened putative indigenous RNB on 5 native legumes
Statistical Mechanics of Learning in the Presence of Outliers
Using methods of statistical mechanics, we analyse the effect of outliers on
the supervised learning of a classification problem. The learning strategy aims
at selecting informative examples and discarding outliers. We compare two
algorithms which perform the selection either in a soft or a hard way. When the
fraction of outliers grows large, the estimation errors undergo a first order
phase transition.Comment: 24 pages, 7 figures (minor extensions added
Correlated patterns in non-monotonic graded-response perceptrons
The optimal capacity of graded-response perceptrons storing biased and
spatially correlated patterns with non-monotonic input-output relations is
studied. It is shown that only the structure of the output patterns is
important for the overall performance of the perceptrons.Comment: 4 pages, 4 figure
A Hebbian approach to complex network generation
Through a redefinition of patterns in an Hopfield-like model, we introduce
and develop an approach to model discrete systems made up of many, interacting
components with inner degrees of freedom. Our approach clarifies the intrinsic
connection between the kind of interactions among components and the emergent
topology describing the system itself; also, it allows to effectively address
the statistical mechanics on the resulting networks. Indeed, a wide class of
analytically treatable, weighted random graphs with a tunable level of
correlation can be recovered and controlled. We especially focus on the case of
imitative couplings among components endowed with similar patterns (i.e.
attributes), which, as we show, naturally and without any a-priori assumption,
gives rise to small-world effects. We also solve the thermodynamics (at a
replica symmetric level) by extending the double stochastic stability
technique: free energy, self consistency relations and fluctuation analysis for
a picture of criticality are obtained
Slowly evolving geometry in recurrent neural networks I: extreme dilution regime
We study extremely diluted spin models of neural networks in which the
connectivity evolves in time, although adiabatically slowly compared to the
neurons, according to stochastic equations which on average aim to reduce
frustration. The (fast) neurons and (slow) connectivity variables equilibrate
separately, but at different temperatures. Our model is exactly solvable in
equilibrium. We obtain phase diagrams upon making the condensed ansatz (i.e.
recall of one pattern). These show that, as the connectivity temperature is
lowered, the volume of the retrieval phase diverges and the fraction of
mis-aligned spins is reduced. Still one always retains a region in the
retrieval phase where recall states other than the one corresponding to the
`condensed' pattern are locally stable, so the associative memory character of
our model is preserved.Comment: 18 pages, 6 figure
Optimally adapted multi-state neural networks trained with noise
The principle of adaptation in a noisy retrieval environment is extended here
to a diluted attractor neural network of Q-state neurons trained with noisy
data. The network is adapted to an appropriate noisy training overlap and
training activity which are determined self-consistently by the optimized
retrieval attractor overlap and activity. The optimized storage capacity and
the corresponding retriever overlap are considerably enhanced by an adequate
threshold in the states. Explicit results for improved optimal performance and
new retriever phase diagrams are obtained for Q=3 and Q=4, with coexisting
phases over a wide range of thresholds. Most of the interesting results are
stable to replica-symmetry-breaking fluctuations.Comment: 22 pages, 5 figures, accepted for publication in PR
The signal-to-noise analysis of the Little-Hopfield model revisited
Using the generating functional analysis an exact recursion relation is
derived for the time evolution of the effective local field of the fully
connected Little-Hopfield model. It is shown that, by leaving out the feedback
correlations arising from earlier times in this effective dynamics, one
precisely finds the recursion relations usually employed in the signal-to-noise
approach. The consequences of this approximation as well as the physics behind
it are discussed. In particular, it is pointed out why it is hard to notice the
effects, especially for model parameters corresponding to retrieval. Numerical
simulations confirm these findings. The signal-to-noise analysis is then
extended to include all correlations, making it a full theory for dynamics at
the level of the generating functional analysis. The results are applied to the
frequently employed extremely diluted (a)symmetric architectures and to
sequence processing networks.Comment: 26 pages, 3 figure
Generalizing with perceptrons in case of structured phase- and pattern-spaces
We investigate the influence of different kinds of structure on the learning
behaviour of a perceptron performing a classification task defined by a teacher
rule. The underlying pattern distribution is permitted to have spatial
correlations. The prior distribution for the teacher coupling vectors itself is
assumed to be nonuniform. Thus classification tasks of quite different
difficulty are included. As learning algorithms we discuss Hebbian learning,
Gibbs learning, and Bayesian learning with different priors, using methods from
statistics and the replica formalism. We find that the Hebb rule is quite
sensitive to the structure of the actual learning problem, failing
asymptotically in most cases. Contrarily, the behaviour of the more
sophisticated methods of Gibbs and Bayes learning is influenced by the spatial
correlations only in an intermediate regime of , where
specifies the size of the training set. Concerning the Bayesian case we show,
how enhanced prior knowledge improves the performance.Comment: LaTeX, 32 pages with eps-figs, accepted by J Phys
- …