360 research outputs found

    NICE, in confidence : an assessment of redaction to obscure confidential information in single technology appraisals by the National Institute for Health and Care Excellence

    Get PDF
    Introduction Health technology assessment (HTA) aims to provide a transparent framework within which normative judgements can be applied for decision making. Such transparency enables the public to understand the rationale for decision making, but conflicts with companies being able to offer commercially sensitive discounts. We investigated how to balance these conflicting ideals. Methods National Institute for Health and Care Excellence (NICE) submissions were reviewed for products with an approved, simple Patient Access Scheme (PAS) discount. The approach to censoring was noted (e.g. total cost and clinical outcomes redacted). Submissions were then assessed for transparency (i.e. whether the decision appeared justifiable given the available information) and confidentiality (i.e. whether the PAS discount could be ‘back calculated’). Results One hundred and eighteen products have an approved commercial arrangement, of which 110 have simple PAS discounts considered within the NICE Single Technology Appraisal programme. A definitive incremental cost-effectiveness ratio was presented within final NICE guidance in only 20 appraisals. Documentation for seven appraisals allowed for the straightforward ‘back calculation’ of PAS discounts. Furthermore, a large amount of information was censored as academic-in-confidence and remains so many years later. Conclusion Appropriate redaction ensures discounts remain confidential, yet maintains the transparency of the HTA decisions made. Complete redaction does not allow for transparent, justifiable decision making. However, redacting ‘enough’ information to preclude direct estimation of discounts provides a means of maintaining both transparency and confidentiality. This study demonstrates a lack of consensus regarding presentation of results, and the importance of appropriate redaction

    D-cycloserine augmentation of exposure-based cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders: a systematic review and meta-analysis of individual participant data

    Full text link
    Importance: Whether and under which conditions D-cycloserine (DCS) augments the effects of exposure-based cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders is unclear. Objective: To clarify whether DCS is superior to placebo in augmenting the effects of cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders and to evaluate whether antidepressants interact with DCS and the effect of potential moderating variables. Data Sources: PubMed, EMBASE, and PsycINFO were searched from inception to February 10, 2016. Reference lists of previous reviews and meta-analyses and reports of randomized clinical trials were also checked. Study Selection: Studies were eligible for inclusion if they were (1) double-blind randomized clinical trials of DCS as an augmentation strategy for exposure-based cognitive behavior therapy and (2) conducted in humans diagnosed as having specific phobia, social anxiety disorder, panic disorder with or without agoraphobia, obsessive-compulsive disorder, or posttraumatic stress disorder. Data Extraction and Synthesis: Raw data were obtained from the authors and quality controlled. Data were ranked to ensure a consistent metric across studies (score range, 0-100). We used a 3-level multilevel model nesting repeated measures of outcomes within participants, who were nested within studies. Results: Individual participant data were obtained for 21 of 22 eligible trials, representing 1047 of 1073 eligible participants. When controlling for antidepressant use, participants receiving DCS showed greater improvement from pretreatment to posttreatment (mean difference, -3.62; 95% CI, -0.81 to -6.43; P = .01; d = -0.25) but not from pretreatment to midtreatment (mean difference, -1.66; 95% CI, -4.92 to 1.60; P = .32; d = -0.14) or from pretreatment to follow-up (mean difference, -2.98, 95% CI, -5.99 to 0.03; P = .05; d = -0.19). Additional analyses showed that participants assigned to DCS were associated with lower symptom severity than those assigned to placebo at posttreatment and at follow-up. Antidepressants did not moderate the effects of DCS. None of the prespecified patient-level or study-level moderators was associated with outcomes. Conclusions and Relevance: D-cycloserine is associated with a small augmentation effect on exposure-based therapy. This effect is not moderated by the concurrent use of antidepressants. Further research is needed to identify patient and/or therapy characteristics associated with DCS response.2018-05-0

    Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils

    Get PDF
    The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in 208^{208}Tl and 214^{214}Bi for the SuperNEMO double beta decay source foils. A modular prototype, called BiPo-1, with 0.8 m2m^2 of sensitive surface area, has been running in the Modane Underground Laboratory since February, 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in 208^{208}Tl. After more than one year of background measurement, a surface activity of the scintillators of A\mathcal{A}(208^{208}Tl) == 1.5 μ\muBq/m2^2 is reported here. Given this level of background, a larger BiPo detector having 12 m2^2 of active surface area, is able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of A\mathcal{A}(208^{208}Tl) << 2 μ\muBq/kg (90% C.L.) with a six month measurement.Comment: 24 pages, submitted to N.I.M.

    Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors

    Full text link
    We have constructed a GEANT4-based detailed software model of photon transport in plastic scintillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutrinoless double beta decay. We compare our simulations to measurements using conversion electrons from a calibration source of 207Bi\rm ^{207}Bi and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account. In this article, we briefly describe our modeling approach and results of our studies.Comment: 16 pages, 10 figure

    Maternal Occupational Exposure to Polycyclic Aromatic Hydrocarbons: Effects on Gastroschisis among Offspring in the National Birth Defects Prevention Study

    Get PDF
    Background: Exposure to polycyclic aromatic hydrocarbons (PAHs) occurs in many occupational settings. There is evidence in animal models that maternal exposure to PAHs during pregnancy is associated with gastroschisis in offspring; however, to our knowledge, no human studies examining this association have been conducted

    A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning

    Full text link
    Progress in biomechanical modelling of human soft tissue is the basis for the development of new clinical applications capable of improving the diagnosis and treatment of some diseases (e.g. cancer), as well as the surgical planning and guidance of some interventions. The finite element method (FEM) is one of the most popular techniques used to predict the deformation of the human soft tissue due to its high accuracy. However, FEM has an associated high computational cost, which makes it difficult its integration in real-time computer-aided surgery systems. An alternative for simulating the mechanical behaviour of human organs in real time comes from the use of machine learning (ML) techniques, which are much faster than FEM. This paper assesses the feasibility of ML methods for modelling the biomechanical behaviour of the human liver during the breathing process, which is crucial for guiding surgeons during interventions where it is critical to track this deformation (e.g. some specific kind of biopsies) or for the accurate application of radiotherapy dose to liver tumours. For this purpose, different ML regression models were investigated, including three tree-based methods (decision trees, random forests and extremely randomised trees) and other two simpler regression techniques (dummy model and linear regression). In order to build and validate the ML models, a labelled data set was constructed from modelling the deformation of eight ex-vivo human livers using FEM. The best prediction performance was obtained using extremely randomised trees, with a mean error of 0.07 mm and all the samples with an error under 1 mm. The achieved results lay the foundation for the future development of some real-time software capable of simulating the human liver deformation during the breathing process during clinical interventions.This work has been funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through research projects TIN2014-52033-R and DPI2013-40859-R, both also supported by European FEDER funds. The authors acknowledge the kind collaboration of the personnel from the hospital involved in the research.Lorente, D.; Martínez-Martínez, F.; Rupérez Moreno, MJ.; Lago, MA.; Martínez-Sober, M.; Escandell-Montero, P.; Martínez-Martínez, JM.... (2017). A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning. Expert Systems with Applications. 71:342-357. doi:10.1016/j.eswa.2016.11.037S3423577

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication
    corecore