2,621 research outputs found

    State Differentiation by Transient Truncation in Coupled Threshold Dynamics

    Full text link
    Dynamics with a threshold input--output relation commonly exist in gene, signal-transduction, and neural networks. Coupled dynamical systems of such threshold elements are investigated, in an effort to find differentiation of elements induced by the interaction. Through global diffusive coupling, novel states are found to be generated that are not the original attractor of single-element threshold dynamics, but are sustained through the interaction with the elements located at the original attractor. This stabilization of the novel state(s) is not related to symmetry breaking, but is explained as the truncation of transient trajectories to the original attractor due to the coupling. Single-element dynamics with winding transient trajectories located at a low-dimensional manifold and having turning points are shown to be essential to the generation of such novel state(s) in a coupled system. Universality of this mechanism for the novel state generation and its relevance to biological cell differentiation are briefly discussed.Comment: 8 pages. Phys. Rev. E. in pres

    Projection neurons in lamina III of the rat spinal cord are selectively innervated by local dynorphin-containing excitatory neurons

    Get PDF
    Large projection neurons in lamina III of the rat spinal cord that express the neurokinin 1 receptor are densely innervated by peptidergic primary afferent nociceptors and more sparsely by low-threshold myelinated afferents. However, we know little about their input from other glutamatergic neurons. Here we show that these cells receive numerous contacts from nonprimary boutons that express the vesicular glutamate transporter 2 (VGLUT2), and form asymmetrical synapses on their dendrites and cell bodies. These synapses are significantly smaller than those formed by peptidergic afferents, but provide a substantial proportion of the glutamatergic synapses that the cells receive (over a third of those in laminae I–II and half of those in deeper laminae). Surprisingly, although the dynorphin precursor preprodynorphin (PPD) was only present in 4–7% of VGLUT2 boutons in laminae I–IV, it was found in 58% of the VGLUT2 boutons that contacted these cells. This indicates a highly selective targeting of the lamina III projection cells by glutamatergic neurons that express PPD, and these are likely to correspond to local neurons (interneurons and possibly projection cells). Since many PPD-expressing dorsal horn neurons respond to noxious stimulation, this suggests that the lamina III projection cells receive powerful monosynaptic and polysynaptic nociceptive input. Excitatory interneurons in the dorsal horn have been shown to possess IA currents, which limit their excitability and can underlie a form of activity-dependent intrinsic plasticity. It is therefore likely that polysynaptic inputs to the lamina III projection neurons are recruited during the development of chronic pain states

    Relating large Ue3U_{e3} to the ratio of neutrino mass-squared differences

    Get PDF
    The non-zero and sizable value of Ue3U_{e3} puts pressure on flavor symmetry models which predict an initially vanishing value. Hence, the tradition of relating fermion mixing matrix elements with fermion mass ratios might need to be resurrected. We note that the recently observed non-vanishing value of Ue3U_{e3} can be related numerically to the ratio of solar and atmospheric mass-squared differences. The most straightforward realization of this can be achieved with a combination of texture zeros and a vanishing neutrino mass. We analyze the implications of some of these possibilities and construct explicit flavor symmetry models that predict these features.Comment: 13 pages, 2 figure

    Phase Diagram of Spinless Fermions on an Anisotropic Triangular Lattice at Half-filling

    Full text link
    The strong coupling phase diagram of the spinless fermions on the anisotropic triangular lattice at half-filling is presented. The geometry of inter-site Coulomb interactions rules the phase diagram. Unconventional charge ordered phases are detected which are the recently reported pinball liquid and the striped chains. Both are induced by the quantum dynamics out of classical disordered states and afford extremely correlated metallic states and the particular domain wall-type of excitations, respectively. The disorder once killed by the quantum effect revives at the finite temperature, which is discussed in the terms of the organic θ\theta-ET2X_2X.Comment: 4pages 6figure

    High-current interruption in vacuum circuit breakers

    Get PDF
    The aim of this project was to find a correlation between contact gap length and switching behavior of a vacuum circuit breaker. A large number of interruption experiments were executed in a vacuum chamber with butt type contacts made of Cu, CuCr 50/50 and AgWC. The currents to be interrupted varied from 2.5 to 32 kA. The rate of change of current and recovery voltage were kept at a fixed value at current zero. Many re-ignitions of the dielectric type, scattered over a wide range of re-ignition voltages, were observed and only a few of the thermal type. The total amount of energy dissipated in the vacuum chamber appears to be determinative for the type of re-ignition. On Cu severe anode spot melting was found, whereas CuCr and AgWC suffered little anode melting. The wide range of re-ignition voltage values found shows that a straight correlation with the contact gap length can not be defined. At 5 to 10 µs after current zero a `second' post arc current did appea

    An innovative methodology/technology for streamflow observation

    Get PDF
    River engineeringInnovative field and laboratory instrumentatio

    Alteration Reaction and Mass Transfer via Fluids with Progress of Fracturing along the Median Tectonic Line, Mie Prefecture, Southwest Japan

    Get PDF
    We have analyzed mass transfer in the cataclasite samples collected from the Median Tectonic Line, southwest Japan, in which the degree of fracturing is well correlated with the bulk rock chemical compositions determined by the X-ray fluorescence (XRF) analysis. The results of “isocon” analysis indicate not only a large volume increase up to 110% but also the two-stage mass transfer during cataclasis. At the first stage from the very weakly to weakly fractured rocks, the weight percents of SiO2, Na2O, and K2O increase, while those of TiO2, FeO, MnO, MgO, and CaO decrease. At the second stage from the weakly to moderately and strongly fractured rocks, the trend of mass transfer is reversed. The principal component analysis reveals that the variation of chemical compositions in the cataclasite samples can be mostly interpreted by the mass transfer via fluids and by the difference in chemical composition in the protolith rocks to lesser degree. Finally, the changes in the modal composition of minerals with increasing cataclasis analyzed by the X-ray diffraction (XRD) with the aid of “RockJock” software clearly elucidate that the mass transfer of chemical elements was caused by dissolution and precipitation of minerals via fluids in the cataclasite samples

    Novel Charge Order and Superconductivity in Two-Dimensional Frustrated Lattice at Quarter Filling

    Full text link
    Motivated by the various physical properties observed in θ\theta-(BEDT-TTF)2_2X, we study the ground state of extended Hubbard model on two-dimensional anisotropic triangular lattice at 1/4-filling with variational Monte Carlo method. It is shown that the nearest-neighbor Coulomb interaction enhances the charge fluctuation and it induces the anomalous state such as charge-ordered metallic state and the triplet next-nearest-neighbor ff-wave superconductivity. We discuss the relation to the real materials and propose the unified view of the family of θ\theta-(BEDT-TTF)2_2X.Comment: 4 pages, 5 figure
    • …
    corecore