65,944 research outputs found

    Breaking Down the Codes: A Study of the Nonverbal Emblems and Regulators Used in International B-Boy Competitions

    Get PDF
    This study explored the use of nonverbal emblems and regulators in international b-boy competitions. Using semiotics, a lexicon of the emblems and regulators was recorded. Then the dimensions from a theory of semantics of dance were applied to understand how b-boy crews (dance teams) from around the world use gesture to communicate with the audience, judges, and other crews. The study analyzed how culture influences the use of emblems and regulators in the intercultural exchange that occurs during the international b-boy competitions, such as Battle of the Year (BOTY) and R16 World Series. Four videos from the 2013 and 2014 BOTY and 2015 R16 were analyzed. The study concluded that cultural dimensions such as collectivism and indulgence influences emblem selection, intensity, and frequency. These nonverbal elements exhibit an overall impact on the battle and the determination of the winner. The paper upon which this poster was based was written for the Senior Seminar course in Communication Arts. The paper was competitively selected for presentation at the Northwest Communication Association Conference in April 2016

    Adsorbent phosphates

    Get PDF
    An adsorbent which uses as its primary ingredient phosphoric acid salts of zirconium or titanium is presented. Production methods are discussed and several examples are detailed. Measurements of separating characteristics of some gases using the salts are given

    Chemical Evolution in the Large Magellanic Cloud

    Get PDF
    We present a new input parameter set of the Pagel model (Pagel & Tautvais˘\rm \breve{s}iene˙\rm \dot{e} 1998) for the Large Magellanic Cloud (LMC) in order to reproduce the observations, including the star formation rate (SFR) history. It is concluded that the probability for (3-8)MM_{\odot} stars to explode as SNe Ia has to be quite high (0.17\sim 0.17) in the LMC. As a result, a steep initial mass function (IMF) slope and existence of the outflow are not needed in order to attain the low [O/Fe] ratio in the LMC. As for the current supernova ratio, a high ratio (1.3\sim 1.3) is concluded by the new parameter set, which is consistent with the recent X-ray observations.Comment: 20 pages, gzipped tar file including LaTeX text and 8 postscript figures. submitted to Publication of the Astronomical Society of Japa

    Amplification of Quantum Meson Modes in the Late Time of Chiral Phase Transition

    Full text link
    It is shown that there exists a possibility of amplification of amplitudes of quantum pion modes with low momenta in the late time of chiral phase transition by using the Gaussian wave functional approximation in the O(4) linear sigma model. It is also shown that the amplification occurs in the mechanism of the resonance by forced oscillation as well as the parametric resonance induced by the small oscillation of the chiral condensate. These mechanisms are investigated in both the case of spatially homogeneous system and the spatially expanded system described by the Bjorken coordinate.Comment: 17 pages, 16 figure

    Asymptotic Learning Curve and Renormalizable Condition in Statistical Learning Theory

    Full text link
    Bayes statistics and statistical physics have the common mathematical structure, where the log likelihood function corresponds to the random Hamiltonian. Recently, it was discovered that the asymptotic learning curves in Bayes estimation are subject to a universal law, even if the log likelihood function can not be approximated by any quadratic form. However, it is left unknown what mathematical property ensures such a universal law. In this paper, we define a renormalizable condition of the statistical estimation problem, and show that, under such a condition, the asymptotic learning curves are ensured to be subject to the universal law, even if the true distribution is unrealizable and singular for a statistical model. Also we study a nonrenormalizable case, in which the learning curves have the different asymptotic behaviors from the universal law

    Electronic Transport in Fullerene C20 Bridge Assisted by Molecular Vibrations

    Full text link
    The effect of molecular vibrations on electronic transport is investigated with the smallest fullerene C20 bridge, utilizing the Keldysh nonequilibrium Green's function techniques combined with the tight-binding molecular-dynamics method. Large discontinuous steps appear in the differential conductance when the applied bias-voltage matches particular vibrational energies. The magnitude of the step is found to vary considerably with the vibrational mode and to depend on the local electronic states besides the strength of electron-vibration coupling. On the basis of this finding, a novel way to control the molecular motion by adjusting the gate voltage is proposed.Comment: 9 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Universal Features of Quantized Thermal Conductance of Carbon Nanotubes

    Full text link
    The universal features of quantized thermal conductance of carbon nanotubes (CNTs) are revealed through theoretical analysis based on the Landauer theory of heat transport. The phonon-derived thermal conductance of semiconducting CNTs exhibits a universal quantization in the low temperature limit, independent of the radius or atomic geometry. The temperature dependence follows a single curve given in terms of temperature scaled by the phonon energy gap. The thermal conductance of metallic CNTs has an additional contribution from electronic states, which also exhibits quantized behavior up to room temperature.Comment: 4 pages, 5 figures. accepted for publication in Phys. Rev. Let
    corecore