40 research outputs found

    Workaholism, work engagement and child well-being: A test of the spillover-crossover model

    Get PDF
    This study examines how working parents’ work attitudes (i.e., workaholism and work engagement) are associated with their child’s psychological well-being. Based on the Spillover-Crossover model (SCM), we hypothesize that (a) work-to-family spillover (i.e., work-to-family conflict and facilitation) and (b) employee happiness will sequentially mediate the relationship between parents’ work attitudes and their child’s emotional and behavioral problems. A cross-sectional survey was conducted among Japanese dual-earner couples with pre-school child(ren). On the basis of valid data from 208 families, the hypothesized model was tested using structural equation modeling. For both fathers and mothers simultaneously, workaholism was positively related to work-to-family conflict, which, in turn, was negatively related to happiness. In contrast, work engagement was positively related to work-to-family facilitation, which, in turn, was positively related to happiness. Fathers’ and mothers’ happiness, in turn, were negatively related to their child’s emotional and behavioral problems. Results suggest that parents’ workaholism and work engagement are related to their child’s emotional and behavioral problems in opposite ways, whereby parents’ spillover and happiness mediate this relationship. These findin

    Mechanism of Chemical Activation of Nrf2

    Get PDF
    NF-E2 related factor-2 (Nrf2) promotes the transcription of many cytoprotective genes and is a major drug target for prevention of cancer and other diseases. Indeed, the cancer-preventive activities of several well-known chemical agents were shown to depend on Nrf2 activation. It is well known that chemopreventive Nrf2 activators stabilize Nrf2 by blocking its ubiquitination, but previous studies have indicated that this process occurs exclusively in the cytoplasm. Kelch-like ECH-associated protein 1 (Keap1) binds to Nrf2 and orchestrates Nrf2 ubiquitination, and it has been a widely-held view that inhibition of Nrf2 ubiquitination by chemopreventive agents results from the dissociation of Nrf2 from its repressor Keap1. Here, we show that while the activation of Nrf2 by prototypical chemical activators, including 5,6-dihydrocyclopenta-1,2-dithiole-3-thione (CPDT) and sulforaphane (SF), results solely from inhibition of its ubiquitination, such inhibition occurs predominantly in the nucleus. Moreover, the Nrf2 activators promote Nrf2 association with Keap1, rather than disassociation, which appears to result from inhibition of Nrf2 phosphorylation at Ser40. Available evidence suggests the Nrf2 activators may block Nrf2 ubiquitination by altering Keap1 conformation via reaction with the thiols of specific Keap1 cysteines. We further show that while the inhibitory effects of CPDT and SF on Nrf2 ubiquitination depend entirely on Keap1, Nrf2 is also degraded by a Keap1-independent mechanism. These findings provide significant new insight about Nrf2 activation and suggest that exogenous chemical activators of Nrf2 enter the nucleus to exert most of their inhibitory impact on Nrf2 ubiquitination and degradation

    The influence of up-wave barge motion on the water resonance at a narrow gap between two rectangular barges under waves in the sea

    Get PDF
    A three-dimensional time-domain potential flow model is developed and applied to simulate the wave resonance in a gap between two side-by-side rectangular barges. A fourth-order predict-correct method is implemented to update free surface boundary conditions. The response of an up-wave barge is predicted by solving the motion equation with the Newmark-β method. Following the validation of the developed numerical model for wave radiation and diffraction around two side-by-side barges, the influence of up-wave barge motion on the gap surfaceresonance is investigated in two different locations of the up-wave barge relative to the back-wave barge at various frequencies. The results reveal that the freely floating up-wave barge significantly influences the resonance frequency and the resonance wave amplitude. Simultaneously, the up-wave barge located in the middle of the back-wave barge leads to a reduction in the resonance wave amplitude and motion response when compared with other configurations

    Computational Models of the Notch Network Elucidate Mechanisms of Context-dependent Signaling

    Get PDF
    The Notch signaling pathway controls numerous cell fate decisions during development and adulthood through diverse mechanisms. Thus, whereas it functions as an oscillator during somitogenesis, it can mediate an all-or-none cell fate switch to influence pattern formation in various tissues during development. Furthermore, while in some contexts continuous Notch signaling is required, in others a transient Notch signal is sufficient to influence cell fate decisions. However, the signaling mechanisms that underlie these diverse behaviors in different cellular contexts have not been understood. Notch1 along with two downstream transcription factors hes1 and RBP-Jk forms an intricate network of positive and negative feedback loops, and we have implemented a systems biology approach to computationally study this gene regulation network. Our results indicate that the system exhibits bistability and is capable of switching states at a critical level of Notch signaling initiated by its ligand Delta in a particular range of parameter values. In this mode, transient activation of Delta is also capable of inducing prolonged high expression of Hes1, mimicking the “ON” state depending on the intensity and duration of the signal. Furthermore, this system is highly sensitive to certain model parameters and can transition from functioning as a bistable switch to an oscillator by tuning a single parameter value. This parameter, the transcriptional repression constant of hes1, can thus qualitatively govern the behavior of the signaling network. In addition, we find that the system is able to dampen and reduce the effects of biological noise that arise from stochastic effects in gene expression for systems that respond quickly to Notch signaling

    Assessing the near surface sensitivity of SCIAMACHY atmospheric CO<sub>2</sub> retrieved using (FSI) WFM-DOAS

    No full text
    International audienceSatellite observations of atmospheric CO2 offer the potential to identify regional carbon surface sources and sinks and to investigate carbon cycle processes. The extent to which satellite measurements are useful however, depends on the near surface sensitivity of the chosen sensor. In this paper, the capability of the SCIAMACHY instrument on board ENVISAT, to observe lower tropospheric and surface CO2 variability is examined. To achieve this, atmospheric CO2 retrieved from SCIAMACHY near infrared (NIR) spectral measurements, using the Full Spectral Initiation (FSI) WFM-DOAS algorithm, is compared to in situ aircraft observations over Siberia and additionally to tower and surface CO2 data over Mongolia, Europe and North America. Preliminary validation of daily averaged SCIAMACHY/FSI CO2 against ground based Fourier Transform Spectrometer (FTS) column measurements made at Park Falls, reveal a negative bias of about ?2.0% for collocated measurements within ±1.0\degree of the site. However, at this spatial threshold SCIAMACHY can only capture the variability of the FTS observations at monthly timescales. To observe day to day variability of the FTS observations, the collocation limits must be increased. Furthermore, comparisons to in-situ CO2 observations demonstrate that SCIAMACHY is capable of observing lower tropospheric variability on (at least) monthly timescales. Out of seventeen time series comparisons, eleven have correlation coefficients of 0.7 or more, and have similar seasonal cycle amplitudes. Additional evidence of the near surface sensitivity of SCIAMACHY, is provided through the significant correlation of FSI derived CO2 with MODIS vegetation indices at over twenty selected locations in the United States. The SCIAMACHY/MODIS comparison reveals that at many of the sites, the amount of CO2 variability is coincident with the amount of vegetation activity. It is evident, from this analysis, that SCIAMACHY therefore has the potential to detect CO2 variability within the lowermost troposphere arising from the activity of the terrestrial biosphere
    corecore