6,222 research outputs found
A dual modelling of evolving political opinion networks
We present the result of a dual modeling of opinion network. The model
complements the agent-based opinion models by attaching to the social agent
(voters) network a political opinion (party) network having its own intrinsic
mechanisms of evolution. These two sub-networks form a global network which can
be either isolated from or dependent on the external influence. Basically, the
evolution of the agent network includes link adding and deleting, the opinion
changes influenced by social validation, the political climate, the
attractivity of the parties and the interaction between them. The opinion
network is initially composed of numerous nodes representing opinions or
parties which are located on a one dimensional axis according to their
political positions. The mechanism of evolution includes union, splitting,
change of position and of attractivity, taken into account the pairwise node
interaction decaying with node distance in power law. The global evolution ends
in a stable distribution of the social agents over a quasi-stable and
fluctuating stationary number of remaining parties. Empirical study on the
lifetime distribution of numerous parties and vote results is carried out to
verify numerical results
Anomalous Spin Polarization of GaAs Two-Dimensional Hole Systems
We report measurements and calculations of the spin-subband depopulation,
induced by a parallel magnetic field, of dilute GaAs two-dimensional (2D) hole
systems. The results reveal that the shape of the confining potential
dramatically affects the values of in-plane magnetic field at which the upper
spin subband is depopulated. Most surprisingly, unlike 2D electron systems, the
carrier-carrier interaction in 2D hole systems does not significantly enhance
the spin susceptibility. We interpret our findings using a multipole expansion
of the spin density matrix, and suggest that the suppression of the enhancement
is related to the holes' band structure and effective spin j=3/2.Comment: 6 pages, 4 figures, substantially extended discussion of result
Negative differential Rashba effect in two-dimensional hole systems
We demonstrate experimentally and theoretically that two-dimensional (2D)
heavy hole systems in single heterostructures exhibit a \emph{decrease} in
spin-orbit interaction-induced spin splitting with an increase in perpendicular
electric field. Using front and back gates, we measure the spin splitting as a
function of applied electric field while keeping the density constant. Our
results are in contrast to the more familiar case of 2D electrons where spin
splitting increases with electric field.Comment: 3 pages, 3 figures. To appear in AP
Centrality scaling in large networks
Betweenness centrality lies at the core of both transport and structural
vulnerability properties of complex networks, however, it is computationally
costly, and its measurement for networks with millions of nodes is near
impossible. By introducing a multiscale decomposition of shortest paths, we
show that the contributions to betweenness coming from geodesics not longer
than L obey a characteristic scaling vs L, which can be used to predict the
distribution of the full centralities. The method is also illustrated on a
real-world social network of 5.5*10^6 nodes and 2.7*10^7 links
Analysis of relative influence of nodes in directed networks
Many complex networks are described by directed links; in such networks, a
link represents, for example, the control of one node over the other node or
unidirectional information flows. Some centrality measures are used to
determine the relative importance of nodes specifically in directed networks.
We analyze such a centrality measure called the influence. The influence
represents the importance of nodes in various dynamics such as synchronization,
evolutionary dynamics, random walk, and social dynamics. We analytically
calculate the influence in various networks, including directed multipartite
networks and a directed version of the Watts-Strogatz small-world network. The
global properties of networks such as hierarchy and position of shortcuts,
rather than local properties of the nodes, such as the degree, are shown to be
the chief determinants of the influence of nodes in many cases. The developed
method is also applicable to the calculation of the PageRank. We also
numerically show that in a coupled oscillator system, the threshold for
entrainment by a pacemaker is low when the pacemaker is placed on influential
nodes. For a type of random network, the analytically derived threshold is
approximately equal to the inverse of the influence. We numerically show that
this relationship also holds true in a random scale-free network and a neural
network.Comment: 9 figure
Type Ia Supernovae, Evolution, and the Cosmological Constant
We explore the possible role of evolution in the analysis of data on SNe Ia
at cosmological distances. First, using a variety of simple sleuthing
techniques, we find evidence that the properties of the high and low redshift
SNe Ia observed so far differ from one another. Next, we examine the effects of
including simple phenomenological models for evolution in the analysis. The
result is that cosmological models and evolution are highly degenerate with one
another, so that the incorporation of even very simple models for evolution
makes it virtually impossible to pin down the values of and
, the density parameters for nonrelativistic matter and for the
cosmological constant, respectively. Moreover, we show that if SNe Ia evolve
with time, but evolution is neglected in analyzing data, then, given enough SNe
Ia, the analysis hones in on values of and which
are incorrect. Using Bayesian methods, we show that the probability that the
cosmological constant is nonzero (rather than zero) is unchanged by the SNe Ia
data when one accounts for the possibility of evolution, provided that we do
not discriminate among open, closed and flat cosmologies a priori. The case for
nonzero cosmological constant is stronger if the Universe is presumed to be
flat, but still depends sensitively on the degree to which the peak
luminosities of SNe Ia evolve as a function of redshift. The estimated value of
, however, is only negligibly affected by accounting for possible
evolution.Comment: 45 pages, 15 figures; accepted for publication in The Astrophysical
Journal. Minor revisions and clarifications made including addition of recent
reference
Lensing of Fast Radio Bursts by Plasma Structures in Host Galaxies
Plasma lenses in the host galaxies of fast radio bursts (FRBs) can strongly
modulate FRB amplitudes for a wide range of distances, including the
Gpc distance of the repeater FRB121102. To produce caustics, the lens'
dispersion-measure depth (), scale size (), and distance
from the source () must satisfy . Caustics produce strong
magnifications () on short time scales ( hours to days and
perhaps shorter) along with narrow, epoch dependent spectral peaks (0.1 to
1~GHz). However, strong suppression also occurs in long-duration (
months) troughs. For geometries that produce multiple images, the resulting
burst components will arrive differentially by s to tens of ms and
they will show different apparent dispersion measures, pc cm. Arrival time perturbations may mask any
underlying periodicity with period s. When arrival times differ by
less than the burst width, interference effects in dynamic spectra are
expected. Strong lensing requires source sizes smaller than , which can be satisfied by compact objects such as
neutron star magnetospheres but not by AGNs. Much of the phenomenology of the
repeating fast radio burst source FRB121102 is similar to lensing effects. The
overall picture can be tested by obtaining wideband spectra of bursts (from
to 10 GHz and possibly higher), which can also be used to characterize the
plasma environment near FRB sources. A rich variety of phenomena is expected
from an ensemble of lenses near the FRB source. We discuss constraints on
densities, magnetic fields, and locations of plasma lenses related to
requirements for lensing to occur.Comment: 11 pages, 7 figures, submitted to the Astrophysical Journa
Realising context-sensitive mobile messaging
Mobile technologies aim to assist people as they move from place to place going about their daily work and social routines. Established and very popular mobile technologies include short-text messages and multimedia messages with newer growing technologies including Bluetooth mobile data transfer protocols and mobile web access.Here we present new work which combines all of the above technologies to fulfil some of the predictions for future context aware messaging. We present a context sensitive mobile messaging system which derives context in the form of physical locations through location sensing and the co-location of people through Bluetooth familiarity
Modeling Dynamics of Information Networks
We propose an information-based model for network dynamics in which imperfect
information leads to networks where the different vertices have widely
different number of edges to other vertices, and where the topology has
hierarchical features. The possibility to observe scale free networks is linked
to a minimally connected system where hubs remain dynamic.Comment: 4 pages, 5 figures; changed content and new fig
- …