811 research outputs found
Atomic oxygen between 80 and 120 km: Evidence for a rapid spatial variation in vertical transport near the ionosphere
Analysis of OGO-6 OI green line photometer results was carried out for 8 cases when the alignment of the spacecraft was such that local emission rates could be determined below the altitude of maximum emission and down to about 80 km. Results show a variation on a scale of 6 deg to 8 deg in latitude between regions where the emission rate increases rapidly between 90 and 95 km and regions where it increases slowly from 80 km to 95 km. Latitude-altitude maps of iso-emissivity contours and iso-density contours for oxygen concentration are presented. The latter are computed under 3 assumptions concerning excitation mechanisms. Comparisons of the spatial variations of oxygen density with the results of a time dependent theory suggest the regions of strong downward transport alternate on a scale of about 1000 km with regions of weak transport near 90 km. In the first case conversion of O to O3 at night appears to be overwhelmed by downward transport of O
Spin reorientation in Na-doped BaFeAs studied by neutron diffraction
We have studied the magnetic ordering in Na doped BaFeAs by
unpolarized and polarized neutron diffraction using single crystals. Unlike
previously studied FeAs-based compounds that magnetically order,
BaNaFeAs exhibits two successive magnetic transitions: For
x=0.35 upon cooling magnetic order occurs at 70\ K with in-plane magnetic
moments being arranged as in pure or Ni, Co and K-doped BaFeAs samples.
At a temperature of 46\ K a second phase transition occurs, which the
single-crystal neutron diffraction experiments can unambiguously identify as a
spin reorientation. At low temperatures, the ordered magnetic moments in
BaNaFeAs point along the direction. Magnetic
correlations in these materials cannot be considered as Ising like, and
spin-orbit coupling must be included in a quantitative theory.Comment: 5 pages, 4 figure
Species and gender differentiation between and among domestic and wild animals using mitochondrial and sex-linked DNA markers
In many African countries accurate and reliable identification of poached wildlife products like carcasses or meat presents a big problem when morphological characters such as skin hair or bones are missing. We describe a molecular based approach that has a potential of serving as a forensic tool in game meat identification in Africa. A mitochondial DNA marker (mt700) and one restriction enzyme, Rsa1 were used in the PCR-RFLP species identification of game meat obtained from two National Parks in Tanzania. Species-specific reference DNA fragment patterns were obtained using fresh meat from ten wildlife and four domesticated species. All species except the zebra, produced unique monomorphic RFLP patterns. Collectively, these patterns demonstrate the potential ability of genetic techniques for discriminating between and among wildlife and domestic species. The reference PCR-RFLP fragments enabled species identification of about 79% of unknown meat samples. In addition, sex was alsoassigned to all of the samples following successful amplification of gender-specific, SRY and ZFY/X, chromosomal domains. Although the present study has been conducted on a limited range both in numbers and genetic diversity of wildlife species present in Africa, the results demonstrate thepotential usefulness of the DNA approach in wildlife forensics in the continent
On the characterisation of a Bragg spectrometer with X-rays from an ECR source
Narrow X-ray lines from helium-like argon emitted from a dedicated ECR source
have been used to determine the response function of a Bragg crystal
spectrometer equipped with large area spherically bent silicon (111) or quartz
(10) crystals. The measured spectra are compared with simulated ones
created by a ray-tracing code based on the expected theoretical crystal's
rocking curve and the geometry of the experimental set-up.Comment: Version acceptee (NIM
The Extrachromosomal EAST Protein of Drosophila Can Associate with Polytene Chromosomes and Regulate Gene Expression
The EAST protein of Drosophila is a component of an expandable extrachromosomal domain of the nucleus. To better understand its function, we studied the dynamics and localization of GFP-tagged EAST. In live larval salivary glands, EAST-GFP is highly mobile and localizes to the extrachromosomal nucleoplasm. When these cells are permeabilized, EAST-GFP rapidly associated with polytene chromosomes. The affinity to chromatin increases and mobility decreases with decreasing salt concentration. Deleting the C-terminal residues 1535 to 2301 of EAST strongly reduces the affinity to polytene chromosomes. The bulk of EAST-GFP co-localizes with heterochromatin and is absent from transcriptionally active chromosomal regions. The predominantly chromosomal localization of EAST-GFP can be detected in non-detergent treated salivary glands of pupae as they undergo apoptosis, however not in earlier stages of development. Consistent with this chromosomal pattern of localization, genetic evidence indicates a role for EAST in the repression of gene expression, since a lethal east mutation is allelic to the viable mutation suppressor of white-spotted. We propose that EAST acts as an ion sensor that modulates gene expression in response to changing intracellular ion concentrations
The biogeography of the caribou lungworm, Varestrongylus eleguneniensis (Nematoda:Protostrongylidae) across northern North America
Varestrongylus eleguneniensis (Nematoda; Protostrongylidae) is a recently described species of lungworm that infects caribou (Rangifer tarandus), muskoxen (Ovibos moschatus) and moose (Alces americanus) across northern North America. Herein we explore the geographic distribution of V. eleguneniensis through geographically extensive sampling and discuss the biogeography of this multi-host parasite. We analyzed fecal samples of three caribou subspecies (n = 1485), two muskox subspecies (n = 159), and two moose subspecies (n = 264) from across northern North America. Protostrongylid dorsal-spined larvae (DSL) were found in 23.8%, 73.6%, and 4.2% of these ungulates, respectively. A portion of recovered DSL were identified by genetic analyses of the ITS-2 region of the nuclear rDNA or the cytochrome oxidase c subunit I (COI) region of the mtDNA. We found V. eleguneniensis widely distributed among caribou and muskox populations across most of their geographic prange in North America but it was rare in moose. Parelaphostrongylus andersoni was present in caribou and moose and we provide new geographic records for this species. This study provides a substantial expansion of the knowledge defining the current distribution and biogeography of protostrongylid nematodes in northern ungulates. Insights about the host and geographic range of V. eleguneniensis can serve as a geographically extensive baseline for monitoring current distribution and in anticipating future biogeographic scenarios under a regime of accelerating climate and anthropogenic perturbation.[Display omitted]•Varestrongylus eleguneniensis is a lungworm whose primary host is the caribou.•The muscleworm, Parelaphostrongylus andersoni, co-infects caribou across its range.•We expand the knowledge on distribution of the caribou lungworm and the muscleworm.•Muskoxen sympatric with caribou are infected with the caribou lungworm.•We discuss the biogeography of V. eleguneniensis and Rangifer across North America
The biogeography of the caribou lungworm, Varestrongylus eleguneniensis (Nematoda: Protostrongylidae) across northern North America
Varestrongylus eleguneniensis (Nematoda; Protostrongylidae) is a recently described species of lungworm that infects caribou (Rangifer tarandus), muskoxen (Ovibos moschatus) and moose (Alces americanus) across northern North America. Herein we explore the geographic distribution of V. eleguneniensis through geographically extensive sampling and discuss the biogeography of this multi-host parasite. We analyzed fecal samples of three caribou subspecies (n = 1485), two muskox subspecies (n = 159), and two moose subspecies (n = 264) from across northern North America. Protostrongylid dorsal-spined larvae (DSL) were found in 23.8%, 73.6%, and 4.2% of these ungulates, respectively. A portion of recovered DSL were identified by genetic analyses of the ITS-2 region of the nuclear rDNA or the cytochrome oxidase c subunit I (COI) region of the mtDNA. We found V. eleguneniensis widely distributed among caribou and muskox populations across most of their geographic prange in North America but it was rare in moose. Parelaphostrongylus andersoni was present in caribou and moose and we provide new geographic records for this species. This study provides a substantial expansion of the knowledge defining the current distribution and biogeography of protostrongylid nematodes in northern ungulates. Insights about the host and geographic range of V. eleguneniensis can serve as a geographically extensive baseline for monitoring current distribution and in anticipating future biogeographic scenarios under a regime of accelerating climate and anthropogenic perturbation
- …