25 research outputs found
Developing and applying supertree methods in Phylogenomics and Macroevolution
Supertrees
can
be
used
to
combine
partially
overalapping
trees
and
generate
more
inclusive
phylogenies.
It
has
been
proposed
that
Maximum
Likelihood
(ML)
supertrees
method
(SM)
could
be
developed
using
an
exponential
probability
distribution
to
model
errors
in
the
input
trees
(given
a
proposed
supertree).
When
the
tree-‐to-‐tree
distances
used
in
the
ML
computation
are
symmetric
differences,
the
ML
SM
has
been
shown
to
be
equivalent
to
a
Majority-‐Rule
consensus
SM,
and
hence,
exactly
as
the
latter,
it
has
the
desirable
property
of
being
a
median
tree
(with
reference
to
the
set
of
input
trees).
The
ability
to
estimate
the
likelihood
of
supertrees,
allows
implementing
Bayesian
(MCMC)
approaches,
which
have
the
advantage
to
allow
the
support
for
the
clades
in
a
supertree
to
be
properly
estimated.
I
present
here
the
L.U.St
software
package;
it
contains
the
first
implementation
of
a
ML
SM
and
allows
for
the
first
time
statistical
tests
on
supertrees.
I
also
characterized
the
first
implementation
of
the
Bayesian
(MCMC)
SM.
Both
the
ML
and
the
Bayesian
(MCMC)
SMs
have
been
tested
for
and
found
to
be
immune
to
biases.
The
Bayesian
(MCMC)
SM
is
applied
to
the
reanalyses
of
a
variety
of
datasets
(i.e.
the
datasets
for
the
Metazoa
and
the
Carnivora),
and
I
have
also
recovered
the
first
Bayesian
supertree-‐based
phylogeny
of
the
Eubacteria
and
the
Archaebacteria.
These
new
SMs
are
discussed,
with
reference
to
other,
well-‐
known
SMs
like
Matrix
Representation
with
Parsimony.
Both
the
ML
and
Bayesian
SM
offer
multiple
attractive
advantages
over
current
alternatives
Developing and applying supertree methods in Phylogenomics and Macroevolution
Supertrees
can
be
used
to
combine
partially
overalapping
trees
and
generate
more
inclusive
phylogenies.
It
has
been
proposed
that
Maximum
Likelihood
(ML)
supertrees
method
(SM)
could
be
developed
using
an
exponential
probability
distribution
to
model
errors
in
the
input
trees
(given
a
proposed
supertree).
When
the
tree-‐to-‐tree
distances
used
in
the
ML
computation
are
symmetric
differences,
the
ML
SM
has
been
shown
to
be
equivalent
to
a
Majority-‐Rule
consensus
SM,
and
hence,
exactly
as
the
latter,
it
has
the
desirable
property
of
being
a
median
tree
(with
reference
to
the
set
of
input
trees).
The
ability
to
estimate
the
likelihood
of
supertrees,
allows
implementing
Bayesian
(MCMC)
approaches,
which
have
the
advantage
to
allow
the
support
for
the
clades
in
a
supertree
to
be
properly
estimated.
I
present
here
the
L.U.St
software
package;
it
contains
the
first
implementation
of
a
ML
SM
and
allows
for
the
first
time
statistical
tests
on
supertrees.
I
also
characterized
the
first
implementation
of
the
Bayesian
(MCMC)
SM.
Both
the
ML
and
the
Bayesian
(MCMC)
SMs
have
been
tested
for
and
found
to
be
immune
to
biases.
The
Bayesian
(MCMC)
SM
is
applied
to
the
reanalyses
of
a
variety
of
datasets
(i.e.
the
datasets
for
the
Metazoa
and
the
Carnivora),
and
I
have
also
recovered
the
first
Bayesian
supertree-‐based
phylogeny
of
the
Eubacteria
and
the
Archaebacteria.
These
new
SMs
are
discussed,
with
reference
to
other,
well-‐
known
SMs
like
Matrix
Representation
with
Parsimony.
Both
the
ML
and
Bayesian
SM
offer
multiple
attractive
advantages
over
current
alternatives
L.U.St: a tool for approximated maximum likelihood supertree reconstruction
BACKGROUND: Supertrees combine disparate, partially overlapping trees to generate a synthesis that provides a high level perspective that cannot be attained from the inspection of individual phylogenies. Supertrees can be seen as meta-analytical tools that can be used to make inferences based on results of previous scientific studies. Their meta-analytical application has increased in popularity since it was realised that the power of statistical tests for the study of evolutionary trends critically depends on the use of taxon-dense phylogenies. Further to that, supertrees have found applications in phylogenomics where they are used to combine gene trees and recover species phylogenies based on genome-scale data sets. RESULTS: Here, we present the L.U.St package, a python tool for approximate maximum likelihood supertree inference and illustrate its application using a genomic data set for the placental mammals. L.U.St allows the calculation of the approximate likelihood of a supertree, given a set of input trees, performs heuristic searches to look for the supertree of highest likelihood, and performs statistical tests of two or more supertrees. To this end, L.U.St implements a winning sites test allowing ranking of a collection of a-priori selected hypotheses, given as a collection of input supertree topologies. It also outputs a file of input-tree-wise likelihood scores that can be used as input to CONSEL for calculation of standard tests of two trees (e.g. Kishino-Hasegawa, Shimidoara-Hasegawa and Approximately Unbiased tests). CONCLUSION: This is the first fully parametric implementation of a supertree method, it has clearly understood properties, and provides several advantages over currently available supertree approaches. It is easy to implement and works on any platform that has python installed. Availability: bitBucket page - https://[email protected]/afro-juju/l.u.st.git. Contact: [email protected]
Implementing and testing Bayesian and maximum-likelihood supertree methods in phylogenetics
Since their advent, supertrees have been increasingly used in large-scale evolutionary studies requiring a phylogenetic framework and substantial efforts have been devoted to developing a wide variety of supertree methods (SMs). Recent advances in supertree theory have allowed the implementation of maximum likelihood (ML) and Bayesian SMs, based on using an exponential distribution to model incongruence between input trees and the supertree. Such approaches are expected to have advantages over commonly used non-parametric SMs, e.g. matrix representation with parsimony (MRP). We investigated new implementations of ML and Bayesian SMs and compared these with some currently available alternative approaches. Comparisons include hypothetical examples previously used to investigate biases of SMs with respect to input tree shape and size, and empirical studies based either on trees harvested from the literature or on trees inferred from phylogenomic scale data. Our results provide no evidence of size or shape biases and demonstrate that the Bayesian method is a viable alternative to MRP and other non-parametric methods. Computation of input tree likelihoods allows the adoption of standard tests of tree topologies (e.g. the approximately unbiased test). The Bayesian approach is particularly useful in providing support values for supertree clades in the form of posterior probabilities
Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes
Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology
Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes.
Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology
Developing and applying supertree methods in Phylogenomics and Macroevolution
Supertrees
can
be
used
to
combine
partially
overalapping
trees
and
generate
more
inclusive
phylogenies.
It
has
been
proposed
that
Maximum
Likelihood
(ML)
supertrees
method
(SM)
could
be
developed
using
an
exponential
probability
distribution
to
model
errors
in
the
input
trees
(given
a
proposed
supertree).
When
the
tree-‐to-‐tree
distances
used
in
the
ML
computation
are
symmetric
differences,
the
ML
SM
has
been
shown
to
be
equivalent
to
a
Majority-‐Rule
consensus
SM,
and
hence,
exactly
as
the
latter,
it
has
the
desirable
property
of
being
a
median
tree
(with
reference
to
the
set
of
input
trees).
The
ability
to
estimate
the
likelihood
of
supertrees,
allows
implementing
Bayesian
(MCMC)
approaches,
which
have
the
advantage
to
allow
the
support
for
the
clades
in
a
supertree
to
be
properly
estimated.
I
present
here
the
L.U.St
software
package;
it
contains
the
first
implementation
of
a
ML
SM
and
allows
for
the
first
time
statistical
tests
on
supertrees.
I
also
characterized
the
first
implementation
of
the
Bayesian
(MCMC)
SM.
Both
the
ML
and
the
Bayesian
(MCMC)
SMs
have
been
tested
for
and
found
to
be
immune
to
biases.
The
Bayesian
(MCMC)
SM
is
applied
to
the
reanalyses
of
a
variety
of
datasets
(i.e.
the
datasets
for
the
Metazoa
and
the
Carnivora),
and
I
have
also
recovered
the
first
Bayesian
supertree-‐based
phylogeny
of
the
Eubacteria
and
the
Archaebacteria.
These
new
SMs
are
discussed,
with
reference
to
other,
well-‐
known
SMs
like
Matrix
Representation
with
Parsimony.
Both
the
ML
and
Bayesian
SM
offer
multiple
attractive
advantages
over
current
alternatives
Developing and applying supertree methods in Phylogenomics and Macroevolution
Supertrees
can
be
used
to
combine
partially
overalapping
trees
and
generate
more
inclusive
phylogenies.
It
has
been
proposed
that
Maximum
Likelihood
(ML)
supertrees
method
(SM)
could
be
developed
using
an
exponential
probability
distribution
to
model
errors
in
the
input
trees
(given
a
proposed
supertree).
When
the
tree-‐to-‐tree
distances
used
in
the
ML
computation
are
symmetric
differences,
the
ML
SM
has
been
shown
to
be
equivalent
to
a
Majority-‐Rule
consensus
SM,
and
hence,
exactly
as
the
latter,
it
has
the
desirable
property
of
being
a
median
tree
(with
reference
to
the
set
of
input
trees).
The
ability
to
estimate
the
likelihood
of
supertrees,
allows
implementing
Bayesian
(MCMC)
approaches,
which
have
the
advantage
to
allow
the
support
for
the
clades
in
a
supertree
to
be
properly
estimated.
I
present
here
the
L.U.St
software
package;
it
contains
the
first
implementation
of
a
ML
SM
and
allows
for
the
first
time
statistical
tests
on
supertrees.
I
also
characterized
the
first
implementation
of
the
Bayesian
(MCMC)
SM.
Both
the
ML
and
the
Bayesian
(MCMC)
SMs
have
been
tested
for
and
found
to
be
immune
to
biases.
The
Bayesian
(MCMC)
SM
is
applied
to
the
reanalyses
of
a
variety
of
datasets
(i.e.
the
datasets
for
the
Metazoa
and
the
Carnivora),
and
I
have
also
recovered
the
first
Bayesian
supertree-‐based
phylogeny
of
the
Eubacteria
and
the
Archaebacteria.
These
new
SMs
are
discussed,
with
reference
to
other,
well-‐
known
SMs
like
Matrix
Representation
with
Parsimony.
Both
the
ML
and
Bayesian
SM
offer
multiple
attractive
advantages
over
current
alternatives
Developing and applying supertree methods in Phylogenomics and Macroevolution
Supertrees
can
be
used
to
combine
partially
overalapping
trees
and
generate
more
inclusive
phylogenies.
It
has
been
proposed
that
Maximum
Likelihood
(ML)
supertrees
method
(SM)
could
be
developed
using
an
exponential
probability
distribution
to
model
errors
in
the
input
trees
(given
a
proposed
supertree).
When
the
tree-‐to-‐tree
distances
used
in
the
ML
computation
are
symmetric
differences,
the
ML
SM
has
been
shown
to
be
equivalent
to
a
Majority-‐Rule
consensus
SM,
and
hence,
exactly
as
the
latter,
it
has
the
desirable
property
of
being
a
median
tree
(with
reference
to
the
set
of
input
trees).
The
ability
to
estimate
the
likelihood
of
supertrees,
allows
implementing
Bayesian
(MCMC)
approaches,
which
have
the
advantage
to
allow
the
support
for
the
clades
in
a
supertree
to
be
properly
estimated.
I
present
here
the
L.U.St
software
package;
it
contains
the
first
implementation
of
a
ML
SM
and
allows
for
the
first
time
statistical
tests
on
supertrees.
I
also
characterized
the
first
implementation
of
the
Bayesian
(MCMC)
SM.
Both
the
ML
and
the
Bayesian
(MCMC)
SMs
have
been
tested
for
and
found
to
be
immune
to
biases.
The
Bayesian
(MCMC)
SM
is
applied
to
the
reanalyses
of
a
variety
of
datasets
(i.e.
the
datasets
for
the
Metazoa
and
the
Carnivora),
and
I
have
also
recovered
the
first
Bayesian
supertree-‐based
phylogeny
of
the
Eubacteria
and
the
Archaebacteria.
These
new
SMs
are
discussed,
with
reference
to
other,
well-‐
known
SMs
like
Matrix
Representation
with
Parsimony.
Both
the
ML
and
Bayesian
SM
offer
multiple
attractive
advantages
over
current
alternatives
A microscopic description of elastic scattering from unstable nuclei within a relativistic framework
Thesis (PhD)--Stellenbosch University, 2018.ENGLISH SUMMARY: In this dissertation, a microscopic study of proton elastic scattering from unstable
nuclei at intermediate energies using relativistic formalisms is presented. We
have employed both the original relativistic impulse approximation (IA1) and the
generalised relativistic impulse approximation (IA2) formalisms to calculate the relativistic
optical potentials, with target densities derived from relativistic mean field
(RMF) theory using the QHD-II, NL3, and FSUGold parameter sets. Comparisons
between the optical potentials computed using both IA1 and IA2 formalisms, and
the different RMF Lagrangians are presented for both stable and unstable targets.
The comparisons are required to study the effect of using IA1 versus IA2 optical
potentials, with different RMF parameter sets, on elastic scattering observables for
unstable targets at intermediate energies. We also study the effect of full-folding
versus factorized form of the optical potentials on elastic scattering observables. As
with the case for stable nuclei, we found that the use of full-folding optical potential
improves the scattering observables (especially spin observables) at low intermediate
energy (e.g. 200MeV). No discernible difference is found at projectile incident
energy of 500 MeV. To check the validity of using localized optical potential, we
calculate the scattering observables using non-local potentials by solving the momentum
space Dirac equation. The Dirac equation is transformed to two coupled
Lippmann-Schwinger equations, which are then numerically solved to obtain the elastic
scattering observables. The results are discussed and compared to calculations
involving local coordinate-space optical potentials.AFRIKAANSE OPSOMMING: In hierdie proefskrif word ’n mikroskopiese model vir elastiese proton verstrooiing
van onstabiele kerne ondersoek deur gebruik te maak van ’n relatiwistiese formulering.
Die NN interaksie word beskryf deur die sogenaamde IA1 en IA2 modelle. Die
kernstruktuur word beskryf deur gebruik te maak van drie verskillende relatiwistiese
gemiddelde-veld modelle, naamlik QHDII, NL3 en FSUGold. Die optiese kernpotensiaal
word bereken met behulp van die IA1 en IA2 NN interaksies sowel as die
drie verskillende kernstruktuur modelle, QHDII, NL3 en FSUGold. Sodoende kan
’n volledige stel verstrooiingswaarneembares bereken word vir elastiese verstrooiing
van onstabiele kerne. Die kern optiesepotensiaal word ook op twee maniere bereken,
naamlik die optimale faktoriseringsmetode en die volle oorvleuelingsmodel. Vir lae
energie van die orde van 200 MeV, gee volle oorvleuelingsmodel ’n verbetering in
die resultate van die spinwaarneembares. By ’n projektielenergie van ongeveer 500
MeV is daar egter geen beduidende verskil tussen hierdie twee metodes nie. Die
Dirac vergelyking in momentum-ruimte word ook opgelos om ’n nie-lokale optiese
kernpotensiaal te bereken. Die Dirac vergelyking word herskryf in terme van twee
gekoppelde Lippmann-Schwinger vergelykings wat dan opgelos word om die elastiese
spinwaarneembares te bepaal. Die resultate van hierdie berekening word dan
bespreek en word vergelyk met berekeninge wat gedoen word vir lokale kern optiesepotensiale
in posisie-ruimte