22 research outputs found

    Acute Gravitational Stress Selectively Impairs Dynamic Cerebrovascular Reactivity in the Anterior Circulation Independent of Changes to the Central Respiratory Chemoreflex

    Get PDF
    Cerebrovascular reactivity (CVR) to changes in the partial pressure of arterial carbon dioxide (PaCO(2)) is an important mechanism that maintains CO(2) or pH homeostasis in the brain. To what extent this is influenced by gravitational stress and corresponding implications for the regulation of cerebral blood flow (CBF) remain unclear. The present study examined the onset responses of pulmonary ventilation (V̇(E)) and anterior middle (MCA) and posterior (PCA) cerebral artery mean blood velocity (V(mean)) responses to acute hypercapnia (5% CO(2)) to infer dynamic changes in the central respiratory chemoreflex and cerebrovascular reactivity (CVR), in supine and 50° head-up tilt (HUT) positions. Each onset response was evaluated using a single-exponential regression model consisting of the response time latency [CO(2)-response delay (t(0))] and time constant (τ). Onset response of V̇(E) and PCA V(mean) to changes in CO(2) was unchanged during 50° HUT compared with supine (τ: V̇(E), p = 0.707; PCA V(mean), p = 0.071 vs. supine) but the MCA V(mean) onset response was faster during supine than during 50° HUT (τ: p = 0.003 vs. supine). These data indicate that gravitational stress selectively impaired dynamic CVR in the anterior cerebral circulation, whereas the posterior circulation was preserved, independent of any changes to the central respiratory chemoreflex. Collectively, our findings highlight the regional heterogeneity underlying CBF regulation that may have translational implications for the microgravity (and hypercapnia) associated with deep-space flight notwithstanding terrestrial orthostatic diseases that have been linked to accelerated cognitive decline and neurodegeneration

    Does respiratory drive modify the cerebral vascular response to changes in end‐tidal carbon dioxide?

    Get PDF
    What is the central question of this study? An interaction exists between the regulatory systems of respiration and cerebral blood flow (CBF), because of the same mediator (carbon dioxide, CO ) for both physiological systems. The present study examined whether the traditional method for determining cerebrovascular reactivity to CO (cerebrovascular reactivity; CVR) is modified by changes in respiration. What is the main finding and its importance? CVR was modified by voluntary changes in respiration during hypercapnia. This finding suggests that an alteration in the respiratory system may under- or over-estimate CVR determined by traditional methods in healthy adults.The cerebral vasculature is sensitive to changes in the arterial partial pressure of carbon dioxide (CO ). This physiological mechanism has been well established as a cerebrovascular reactivity to CO (CVR). However, arterial CO may not be an independent variable in the traditional method to assess CVR since the cerebral blood flow (CBF) response is partly affected by the activation of respiratory drive or higher centers in the brain. We hypothesized that CVR is modified by changes in respiration. To test our hypothesis, in the present study, ten young healthy subjects performed hyper- or hypo-ventilation to change end-tidal CO (P CO ) under different concentrations of CO gas inhalation (0, 2.0, 3.5%). We measured middle cerebral artery mean blood flow velocity (MCAVm) by transcranial Doppler to identify the CBF response to change in P CO during each condition. At each F CO condition, P CO was significantly altered by changes in ventilation, and MCA Vm changed accordingly. However, the relationship between changes in MCV Vm and P CO as a response curve of CVR was reset upwards and downwards by hypo- and hyper-ventilation, respectively, compared with CVR during normal-ventilation. The findings of the present study may provide the possibility that an alteration in respiration under- or over-estimates CVR determined by the traditional methods

    Acute hypoxia impairs posterior cerebral bioenergetics and memory in man

    Get PDF
    Abstract Hypoxia has the potential to impair cognitive function; however, it is still uncertain which cognitive domains are adversely affected. We examined the effects of acute hypoxia (∼7 h) on central executive (Go/No‐Go) and non‐executive (memory) tasks and the extent to which impairment was potentially related to regional cerebral blood flow and oxygen delivery (CDO2). Twelve male participants performed cognitive tasks following 0, 2, 4 and 6 h of passive exposure to both normoxia and hypoxia (12% O2), in a randomized block cross‐over single‐blinded design. Middle cerebral artery (MCA) and posterior cerebral artery (PCA) blood velocities and corresponding CDO2 were determined using bilateral transcranial Doppler ultrasound. In hypoxia, MCA DO2 was reduced during the Go/No‐Go task (P = 0.010 vs. normoxia, main effect), and PCA DO2 was attenuated during memorization (P = 0.005 vs. normoxia) and recall components (P = 0.002 vs. normoxia) in the memory task. The accuracy of the memory task was also impaired in hypoxia (P = 0.049 vs. normoxia). In contrast, hypoxia failed to alter reaction time (P = 0.19 vs. normoxia) or accuracy (P = 0.20 vs. normoxia) during the Go/No‐Go task, indicating that selective attention and response inhibition were preserved. Hypoxia did not affect cerebral blood flow or corresponding CDO2 responses to cognitive activity (P > 0.05 vs. normoxia). Collectively, these findings highlight the differential sensitivity of cognitive domains, with memory being selectively vulnerable in hypoxia

    Sympathetic and hemodynamic responses to exercise in heart failure with preserved ejection fraction

    Get PDF
    Excessive sympathetic activity during exercise causes heightened peripheral vasoconstriction, which can reduce oxygen delivery to active muscles, resulting in exercise intolerance. Although both patients suffering from heart failure with preserved and reduced ejection fraction (HFpEF and HFrEF, respectively) exhibit reduced exercise capacity, accumulating evidence suggests that the underlying pathophysiology may be different between these two conditions. Unlike HFrEF, which is characterized by cardiac dysfunction with lower peak oxygen uptake, exercise intolerance in HFpEF appears to be predominantly attributed to peripheral limitations involving inadequate vasoconstriction rather than cardiac limitations. However, the relationship between systemic hemodynamics and the sympathetic neural response during exercise in HFpEF is less clear. This mini review summarizes the current knowledge on the sympathetic (i.e., muscle sympathetic nerve activity, plasma norepinephrine concentration) and hemodynamic (i.e., blood pressure, limb blood flow) responses to dynamic and static exercise in HFpEF compared to HFrEF, as well as non-HF controls. We also discuss the potential of a relationship between sympathetic over-activation and vasoconstriction leading to exercise intolerance in HFpEF. The limited body of literature indicates that higher peripheral vascular resistance, perhaps secondary to excessive sympathetically mediated vasoconstrictor discharge compared to non-HF and HFrEF, drives exercise in HFpEF. Excessive vasoconstriction also may primarily account for over elevations in blood pressure and concomitant limitations in skeletal muscle blood flow during dynamic exercise, resulting in exercise intolerance. Conversely, during static exercise, HFpEF exhibit relatively normal sympathetic neural reactivity compared to non-HF, suggesting that other mechanisms beyond sympathetic vasoconstriction dictate exercise intolerance in HFpEF
    corecore