9 research outputs found

    A change of the seaward boundary of Goukamma Marine Protected Area could increase conservation and fishery benefits

    Get PDF
    Goukamma Marine Protected Area (MPA) on the South African temperate South Coast has been shown to be effective in maintaining a spawning stock of roman, Chrysoblephus laticeps (Sparidae). The larval ecology and the oceanographic conditions in the area suggest a good potential for the enhancement of roman stocks outside the reserve through larval dispersal. A high rate of illegal fishing just inside the seaward boundary of the MPA could severely compromise its function.We suggest that a change of the seaward boundary of the reserve to coincide with a latitudinal line could increase its function as a harvest refuge for resident reef fishes such as roman, facilitate voluntary compliance and monitoring and prosecution of illegal fishing without a significant negative impact on the commercial linefishing fleet in the area. Simple adjustments such as the one proposed here could be attempted at a number of South African MPAs as they would be beneficial to achieve fishery and conservation goals alike

    Sustainable seafood using octopus as a model

    Get PDF
    The global catch of octopus and squid shows annual variability and demand is likely to increase for both locally-supplied and imported products. However, the vulnerability of seafood resources is now well known, the reliability of fisheries catch data is still unclear, management of cephalopod stocks is mostly rudimentary, and there is uncertainty and concern about their sustainability among fisheries managers, the fishing industry, retailers, researchers and consumers. Here, a new project is presented which aims to address and resolve ways to enhance the effectiveness of seafood sustainability in general, with the aid of a freely accessible identification and traceability tool linked to sophisticated databases, and using artificial intelligence, machine learning and blockchain technology, to provide an easy and reliable way to trace seafood using octopus as a model. The project is a contribution to UN Sustainable Development Goals 2, 9, 14, and 17

    Unravelling links between squid catch variations and biophysical mechanisms in South African waters

    Get PDF
    Using satellite observations, this study uncovers the biophysical drivers of the lucrative chokka squid fishery in South Africa over the last two decades (1998–2017) and addresses their potential links with low squid catches. Chokka squid fishing is crucial to the economic wellbeing of local communities. However, the squid biomass is prone to considerable fluctuations, including abrupt declines with negative socio-economic impacts. We show that the squid catch is significantly and positively correlated with satellite-derived chlorophyll-a (Chl-a, an index of phytoplankton biomass) from year to year in South African coastal waters. Two main phytoplankton blooms are observed to occur seasonally in the austral spring and autumn, peaking in October and April, respectively. From October to April, phytoplankton abundance is influenced by the occurrence of wind-driven upwelling over the South African west coast (southern Benguela) and the central Agulhas Bank (so-called Cold Ridge upwelling), while the surface currents appear more important for shelf edge processes and advection along the Cold Ridge on shorter timescales. Low squid catches are observed in 2001 and 2013 and linked to declines in Chl-a induced by weak winds and relaxed negative wind stress curl over the southwest coast in 2001, and over the southwest coast and the central Agulhas Bank in 2013. Phytoplankton phenology (bloom timing) analysis reveals absent, or shorter and delayed blooms, over the Benguela upwelling region in 2001 and both the Benguela and Cold Ridge upwelling areas in 2013. In contrast, the high catch years of 2004 and 2009, associated with elevated Chl-a, coincide with early and/or prolonged seasonal blooms. These are induced by strong winds over the Benguela upwelling and Cold Ridge areas in 2004, and by intensified negative wind stress curl over the Benguela upwelling area in 2009. These results show that the squid catch fluctuations are potentially predictable and could support policymakers seeking to improve their planning of adaptation strategies and risk mitigation

    Ecological connectivity between the areas beyond national jurisdiction and coastal waters: Safeguarding interests of coastal communities in developing countries

    Get PDF
    The UN General Assembly has made a unanimous decision to start negotiations to establish an international, legally-binding instrument for the conservation and sustainable use of marine biological diversity within Areas Beyond National Jurisdiction (ABNJ). However, there has of yet been little discussion on the importance of this move to the ecosystem services provided by coastal zones in their downstream zone of influence. Here, we identify the ecological connectivity between ABNJ and coastal zones as critically important in the negotiation process and apply several approaches to identify some priority areas for protection from the perspective of coastal populations of Least Developed Countries (LDCs). Initially, we review the scientific evidence that demonstrates ecological connectivity between ABNJ and the coastal zones with a focus on the LDCs. We then use ocean modelling to develop a number of metrics and spatial maps that serve to quantify the connectivity of the ABNJ to the coastal zone. We find that the level of exposure to the ABNJ influences varies strongly between countries. Similarly, not all areas of the ABNJ are equal in their impacts on the coastline. Using this method, we identify the areas of the ABNJ that are in the most urgent need of protection on the grounds of the strength of their potential downstream impacts on the coastal populations of LDCs. We argue that indirect negative impacts of the ABNJ fishing, industrialisation and pollution, communicated via oceanographic, cultural and ecological connectivity to the coastal waters of the developing countries should be of concern

    The small pelagic fishery of the Pemba Channel, Tanzania: what we know and what we need to know for management under climate change

    Get PDF
    Small pelagic fish, including anchovies, sardines and sardinellas, mackerels, capelin, hilsa, sprats and herrings, are distributed widely, from the tropics to the far north Atlantic Ocean and to the southern oceans off Chile and South Africa. They are most abundant in the highly productive major eastern boundary upwelling systems and are characterised by significant natural variations in biomass. Overall, small pelagic fisheries represent about one third of global fish landings although a large proportion of the catch is processed into animal feeds. Nonetheless, in some developing countries in addition to their economic value, small pelagic fisheries also make an important contribution to human diets and the food security of many low-income households. Such is the case for many communities in the Zanzibar Archipelago and on mainland Tanzania in the Western Indian Ocean. Of great concern in this region, as elsewhere, is the potential impact of climate change on marine and coastal ecosystems in general, and on small pelagic fisheries in particular. This paper describes data and information available on Tanzania's small pelagic fisheries, including catch and effort, management protocols and socio-economic significance

    Ontogenetic dietary shift and morphological correlates for Diplodus capensis (Teleostei: Sparidae) in southern Angola

    No full text
    Allometric growth patterns of functional morphological variables that reflect resource use in fish were correlated with the diet of Diplodus capensis in southern Angola. A total of 114 individuals (76–336 mm FL) were collected for stomach content analysis and a further 35 individuals (80–320 mm FL) for morphometric analysis. The major dietary components belonged to the groups Chlorophyta, Cirripedia, Rhodophyta and Bivalvia, and made up 71.7% of the diet in terms of a computed ranking index. There was a clear ontogenetic dietary shift with small fish feeding predominantly on algae and large fish on barnacles and mussels. This increasingly durophagous diet corresponded with a positive allometric growth pattern in the gape dimensions (width, height and surface area), adductor mandibulae muscle process and incisor width. Conversely, the relative gut length followed an isometric growth pattern, suggesting a decreased absorptive capacity. This isometric growth pattern is attributed to the better digestibility of the durophagous prey items when compared with algae and further corroborates a link between the morphology and an ontogenetic dietary shift observed in this species.Key words: algae, allometric growth, blacktail seabream, durophagy, ecomorphology
    corecore