72 research outputs found
Photo-Emission Electron Microscopy (PEEM) Heating Investigations of a Natural Amphibole Sample
PEEM allows ‘real-time’ observations to be made of solid-state transformations and other high-temperature processes taking place during vacuum-heating up to c. 2000°C The solid state transformations of an amphibole-rich hornblendite specimen have been observed in the temperature range of 750–1000°C (± 50°C Between c. 970–990°C a rapid change in orientation contrast was observed, indicating a structural rearrangement from an oxyhornblende crystal lattice to a clinopyroxene structure. This phase retains the original amphibole shape and texture (including two 120°C intersecting cleavage traces), but possesses a clinopyroxene crystal structure. At higher temperatures this phase is seen to decompose, forming iron oxides and other fine-grained products. PEEM has provided useful information on both the nature and rates of transformation of natural amphiboles which has proved invaluable in our understanding of the mineralogically-controlled mechanisms of argon release during 40Ar/39Ar dating of amphibole samples
An (U-Th)/He age for the shallow-marine Wetumpka impact structure, Alabama, USA
Single crystal (U-Th)/He dating was applied to 24 apatite and 23 zircon grains from the Wetumpka impact structure, Alabama, USA. This small approximately 5–7.6 km impact crater was formed in a shallow marine environment, with no known preserved impact melt, thus offering a challenge to common geochronological techniques. A mean (U-Th)/He apatite and zircon age of 84.4 ± 1.4 Ma (2σ) was obtained, which is within error of the previously estimated Late Cretaceous impact age of approximately 83.5 Ma. In addition, helium diffusion modeling of apatite and zircon grains during fireball/contact, shock metamorphism, and hydrothermal events was undertaken, to show the influence of these individual thermal processes on resetting (U-Th)/He ages in the Wetumpka samples. This study has shown that the (U-Th)/He geochronological technique has real potential for dating impact structures, especially smaller and eroded impact structures that lack impact melt lithologies
Dendritic reidite from the Chesapeake Bay impact horizon, Ocean Drilling Program Site 1073 (offshore northeastern USA): A fingerprint of distal ejecta?
High-pressure minerals provide records of processes not normally preserved in Earth’s crust. Reidite, a quenchable polymorph of zircon, forms at pressures >20 GPa during shock compression. However, there is no broad consensus among empirical, experimental, and theoretical studies on the nature of the polymorphic transformation. Here we decipher a multistage history of reidite growth recorded in a zircon grain in distal impact ejecta (offshore northeastern United States) from the ca. 35 Ma Chesapeake Bay impact event which, remarkably, experienced near-complete conversion (89%) to reidite. The grain displays two distinctive reidite habits: (1) intersecting sets of planar lamellae that are dark in cathodoluminescence (CL); and (2) dendritic epitaxial overgrowths on the lamellae that are luminescent in CL. While the former is similar to that described in literature, the latter has not been previously reported. A two-stage growth model is proposed for reidite formation at >40 GPa in Chesapeake Bay impact ejecta: formation of lamellar reidite by shearing during shock compression, followed by dendrite growth, also at high pressure, via recrystallization. The dendritic reidite is interpreted to nucleate on lamellae and replace damaged zircon adjacent to lamellae, which may be amorphous ZrSiO4 or possibly an intermediate phase, all before quenching. These results provide new insights on the microstructural evolution of the highpressure polymorphic transformation over the microseconds-long interval of reidite stability during meteorite impact. Given the formation conditions, dendritic reidite may be a unique indicator of distal ejecta
Global distribution of the HIMU end member: Formation through Archean plume-lid tectonics
Oceanic basalts reflect the heterogeneities in the earth's mantle, which can be explained by five mantle end members. The HIMU end member, characterized by high time-integrated μ (238U/204Pb), is defined by the composition of lavas from the ocean islands of St. Helena, South Atlantic Ocean and Mangaia and Tubuai (Cook-Austral Islands), South Pacific Ocean. It is widely considered to be derived from a mantle reservoir that is rarely sampled and not generally involved in mixing with the other mantle components. On the other hand, the FOZO end member, located at the FOcal ZOne of oceanic volcanic rock arrays on isotope diagrams, is considered to be a widespread common component with slightly less radiogenic 206Pb/204Pb and intermediate Sr-Nd-Hf isotopic compositions. Here we present new major and trace element, Sr-Nd-Pb-Hf isotope and geochronological data from the Walvis Ridge and Richardson Seamount in the South Atlantic Ocean and the Manihiki Plateau and Eastern Chatham Rise in the southwest Pacific Ocean. Our new data, combined with literature data, document a more widespread (nearly global) distribution of the HIMU end member than previously postulated. Our survey shows that HIMU is generally associated with low-volume alkaline, carbonatitic and/or kimberlitic intraplate volcanism, consistent with derivation from low degrees of melting of CO2-rich sources. The majority of end member HIMU locations can be directly related to hotspot settings. The restricted trace element and isotopic composition (St. Helena type HIMU), but near-global distribution, point to a deep-seated, widespread reservoir, which most likely formed in the Archean. In this context we re-evaluate the origin of a widespread HIMU reservoir in an Archean geodynamic setting. We point out that the classic ocean crust recycling model cannot be applied in a plume-lid dominated tectonic setting, and instead propose that delamination of carbonatite- metasomatized subcontinental lithospheric mantle could be a suitable HIMU source
Paired EMI-HIMU hotspots in the South Atlantic-Starting plume heads trigger compositionally distinct secondary plumes?
Age-progressive volcanism is generally accepted as the surface expression of deep-rooted mantle plumes, which are enigmatically linked with the African and Pacific large low-shear velocity provinces (LLSVPs). We present geochemical and geochronological data collected from the oldest portions of the age-progressive enriched mantle one (EMI)-type Tristan-Gough track. They are part of a 30- to 40-million year younger age-progressive hotspot track with St. Helena HIMU (high time-integrated U-238/Pb-204) composition, which is also observed at the EMI-type Shona hotspot track in the southernmost Atlantic. Whereas the primary EMI-type hotspots overlie the margin of the African LLSVP, the HIMU-type hotspots are located above a central portion of the African LLSVP, reflecting a large-scale geochemical zonation. We propose that extraction of large volumes of EMI-type mantle from the margin of the LLSVP by primary plume heads triggered upwelling of HIMU material from a more internal domain of the LLSVP, forming secondary plumes
Age and structure of the Shyok Suture in the Ladakh region of Northwestern India: Implications for slip on the Karakoram Fault System
A precise age for the collision of the Kohistan-Ladakh block with Eurasia along the Shyok suture zone (SSZ) is one key to understanding the accretionary history of Tibet and the tectonics of Eurasia during the India-Eurasia collision. Knowing the age of the SSZ also allows the suture to be used as a piercing line for calculating total offset along the Karakoram Fault, which effectively represents the SE border of the Tibetan Plateau and has played a major role in plateau evolution. We present a combined structural, geochemical, and geochronologic study of the SSZ as it is exposed in the Nubra region of India to test two competing hypotheses: that the SSZ is of Late Cretaceous or, alternatively, of Eocene age. Coarse-continental strata of the Saltoro Molasse, mapped in this area, contain detrital zircon populations suggestive of derivation from Eurasia despite the fact that the molasse itself is deposited unconformably onto Kohistan-Ladakh rocks, indicating that the molasse is postcollisional. The youngest population of detrital zircons in these rocks (approximately 92 Ma) and a U/Pb zircon date for a dike that cuts basal molasse outcrops (approximately 85 Ma) imply that deposition of the succession began in the Late Cretaceous. This establishes a minimum age for the SSZ and rules out the possibility of an Eocene collision between Kohistan-Ladakh and Eurasia. Our results support correlation of the SSZ with the Bangong suture zone in Tibet, which implies a total offset across the Karakoram Fault of approximately 130–190 km
Refining lunar impact chronology through high spatial resolution 40Ar/39Ar dating of impact melts
Quantitative constraints on the ages of melt-forming impact events on the Moon are based primarily on isotope
geochronology of returned samples. However, interpreting the results of such studies can often be difficult
because the provenance region of any sample returned from the lunar surface may have experienced
multiple impact events over the course of billions of years of bombardment. We illustrate this problem with
new laser microprobe 40Ar/39Ar data for two Apollo 17 impact melt breccias. Whereas one sample yields a
straightforward result, indicating a single melt-forming event at ca. 3.83 Ga, data from the other sample document
multiple impact melt–forming events between ca. 3.81 Ga and at least as young as ca. 3.27 Ga. Notably,
published zircon U/Pb data indicate the existence of even older melt products in the same sample. The revelation
of multiple impact events through 40Ar/39Ar geochronology is likely not to have been possible using
standard incremental heating methods alone, demonstrating the complementarity of the laser microprobe
technique. Evidence for 3.83 Ga to 3.81 Ga melt components in these samples reinforces emerging interpretations
that Apollo 17 impact breccia samples include a significant component of ejecta from the Imbrium basin
impact. Collectively, our results underscore the need to quantitatively resolve the ages of different melt generations
from multiple samples to improve our current understanding of the lunar impact record, and to establish
the absolute ages of important impact structures encountered during future exploration missions in the
inner Solar System
New Age and Geochemical Data from the Southern Colville and Kermadec Ridges, SW Pacific: Insights into the recent geological history and petrogenesis of the Proto-Kermadec (Vitiaz) Arc
Highlights
• Age and petrogenesis of the Miocene-Pleistocene proto Kermadec arc: the Kermadec and Colville Ridge
• Complex interplay between element flux from the subducting Pacific Plate and heterogenous mantle wedge
• New insights into the recent tectonic history of the Kermadec arc system
Abstract
The intra-oceanic Kermadec arc system extends ~1300 km between New Zealand and Fiji and comprises at least 30 arc front volcanoes, the Havre Trough back-arc and the remnant Colville and Kermadec Ridges. To date, most research has focussed on the Kermadec arc front volcanoes leaving the Colville and Kermadec Ridges virtually unexplored. Here, we present seven 40Ar/39Ar ages together with a comprehensive major and trace element and Sr-, Nd-, and Pb-isotope dataset from the Colville and Kermadec Ridges to better understand the evolution, petrogenesis and splitting of the former proto-Kermadec (Vitiaz) Arc to form these two remnant arc ridges. Our 40Ar/39Ar ages range from ~7.5–2.6 Ma, which suggests that arc volcanism at the Colville Ridge occurred continuously and longer than previously thought. Recovered Colville and Kermadec Ridge lavas range from mafic picro-basalts (MgO = ~8 wt%) to dacites. The lavas have arc-type normalised incompatible element patterns and Sr and Pb isotopic compositions intermediate between Pacific MORB and subducted lithosphere (including sediments, altered oceanic crust and serpentinised uppermost mantle). Geochemically diverse lavas, including ocean island basalt-like and potassic lavas with high Ce/Yb, Th/Zr, intermediate 206Pb/204Pb and low 143Nd/144Nd ratios were recovered from the Oligocene South Fiji Basin (and Eocene Three Kings Ridge) located west of the Colville Ridge. If largely trench-perpendicular mantle flow was operating during the Miocene, this geochemical heterogeneity was likely preserved in the Colville and Kermadec sub arc mantle. The Colville and Kermadec Ridge data therefore highlight the complex interplay between pre-existing mantle heterogeneities and material fluxes from the subducting Pacific Plate. The new data allow us to present a holistic (yet simplified) picture of the tectonic evolution of the late Vitiaz Arc and northern Zealandia since the Miocene and how this tectonism influences volcanic activity along the Kermadec arc at the present
- …