197 research outputs found

    Lack of Correlation between Severity of Clinical Symptoms, Skin Test Reactivity, and Radioallergosorbent Test Results in Venom-Allergic Patients

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To retrospectively examine the relation between skin test reactivity, venom-specific immunoglobulin E (IgE) antibody levels, and severity of clinical reaction in patients with insect venom allergy.</p> <p>Method</p> <p>Thirty-six patients (including 15 females) who presented with a history of allergic reactions to insect stings were assessed. The mean age at the time of the reactions was 33.4 ± 15.1 years (range, 4-76 years), and patients were evaluated 43.6 ± 90 months (range, 1-300 months) after the reactions. Clinical reactions were scored according to severity, from 1 (cutaneous manifestations only) to 3 (anaphylaxis with shock). These scores were compared to scores for skin test reactivity (0 to 5, indicating the log increase in sensitivity from 1 μg/mL to 0.0001 μg/mL) and radioallergosorbent test (RAST) levels (0 to 4, indicating venom-specific IgE levels, from undetectable to >17.5 kilounits of antigen per litre [kUA/L]).</p> <p>Results</p> <p>No correlation was found between skin test reactivity (Spearman's coefficient = 0.15, <it>p </it>= .377) or RAST level (Spearman's coefficient = 0.32, <it>p </it>= .061) and the severity of reaction. Skin test and RAST scores both differed significantly from clinical severity (<it>p </it>< .05), but there was a significant correlation between skin test reactivity and RAST score (<it>p </it>= .042). There was no correlation between skin test reactivity and time since reaction (Spearman's coefficient = 0.18, <it>p </it>= .294) nor between RAST and time since reaction (<it>r </it>= 0.1353, <it>p </it>= .438). Elimination of patients tested more than 12 months after their reaction still produced no correlation between skin test reactivity (<it>p </it>= .681) or RAST score (<it>p </it>= .183) and the severity of the clinical reaction.</p> <p>Conclusion</p> <p>In venom-allergic patients (in contrast to reported findings in cases of inhalant IgE-mediated allergy), there appears to be no significant correlation between the degree of skin test reactivity or levels of venom-specific IgE (determined by RAST) and the severity of the clinical reaction.</p

    Urticaria and angioedema

    Get PDF
    Urticaria (hives) is a common disorder that often presents with angioedema (swelling that occurs beneath the skin). It is generally classified as acute, chronic or physical. Second-generation, non-sedating H1-receptor antihistamines represent the mainstay of therapy for both acute and chronic urticaria. Angioedema can occur in the absence of urticaria, with angiotensin-converting enzyme (ACE) inhibitor-induced angioedema and idiopathic angioedema being the more common causes. Rarer causes are hereditary angioedema (HAE) or acquired angioedema (AAE). Although the angioedema associated with these disorders is often self-limited, laryngeal involvement can lead to fatal asphyxiation in some cases. The management of HAE and AAE involves both prophylactic strategies to prevent attacks of angioedema (i.e., trigger avoidance, attenuated androgens, tranexamic acid, and plasma-derived C1 inhibitor replacement therapy) as well as pharmacological interventions for the treatment of acute attacks (i.e., C1 inhibitor replacement therapy, ecallantide and icatibant). In this article, the authors review the causes, diagnosis and management of urticaria (with or without angioedema) as well as the work-up and management of isolated angioedema, which vary considerably from that of angioedema that occurs in the presence of urticaria

    The emergence of semantic categorization in early visual processing: ERP indices of animal vs. artifact recognition

    Get PDF
    BACKGROUND: Neuroimaging and neuropsychological literature show functional dissociations in brain activity during processing of stimuli belonging to different semantic categories (e.g., animals, tools, faces, places), but little information is available about the time course of object perceptual categorization. The aim of the study was to provide information about the timing of processing stimuli from different semantic domains, without using verbal or naming paradigms, in order to observe the emergence of non-linguistic conceptual knowledge in the ventral stream visual pathway. Event related potentials (ERPs) were recorded in 18 healthy right-handed individuals as they performed a perceptual categorization task on 672 pairs of images of animals and man-made objects (i.e., artifacts). RESULTS: Behavioral responses to animal stimuli were ~50 ms faster and more accurate than those to artifacts. At early processing stages (120–180 ms) the right occipital-temporal cortex was more activated in response to animals than to artifacts as indexed by posterior N1 response, while frontal/central N1 (130–160) showed the opposite pattern. In the next processing stage (200–260) the response was stronger to artifacts and usable items at anterior temporal sites. The P300 component was smaller, and the central/parietal N400 component was larger to artifacts than to animals. CONCLUSION: The effect of animal and artifact categorization emerged at ~150 ms over the right occipital-temporal area as a stronger response of the ventral stream to animate, homomorphic, entities with faces and legs. The larger frontal/central N1 and the subsequent temporal activation for inanimate objects might reflect the prevalence of a functional rather than perceptual representation of manipulable tools compared to animals. Late ERP effects might reflect semantic integration and cognitive updating processes. Overall, the data are compatible with a modality-specific semantic memory account, in which sensory and action-related semantic features are represented in modality-specific brain areas

    Disease-associated pathophysiologic structures in pediatric rheumatic diseases show characteristics of scale-free networks seen in physiologic systems: implications for pathogenesis and treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While standard reductionist approaches have provided some insights into specific gene polymorphisms and molecular pathways involved in disease pathogenesis, our understanding of complex traits such as atherosclerosis or type 2 diabetes remains incomplete. Gene expression profiling provides an unprecedented opportunity to understand complex human diseases by providing a global view of the multiple interactions across the genome that are likely to contribute to disease pathogenesis. Thus, the goal of gene expression profiling is not to generate lists of differentially expressed genes, but to identify the physiologic or pathogenic processes and structures represented in the expression profile.</p> <p>Methods</p> <p>RNA was separately extracted from peripheral blood neutrophils and mononuclear leukocytes, labeled, and hybridized to genome level microarrays to generate expression profiles of children with polyarticular juvenile idiopathic arthritis, juvenile dermatomyositis relative to childhood controls. Statistically significantly differentially expressed genes were identified from samples of each disease relative to controls. Functional network analysis identified interactions between products of these differentially expressed genes.</p> <p>Results</p> <p><it>In silico </it>models of both diseases demonstrated similar features with properties of scale-free networks previously described in physiologic systems. These networks were observable in both cells of the innate immune system (neutrophils) and cells of the adaptive immune system (peripheral blood mononuclear cells).</p> <p>Conclusion</p> <p>Genome-level transcriptional profiling from childhood onset rheumatic diseases suggested complex interactions in two arms of the immune system in both diseases. The disease associated networks showed scale-free network patterns similar to those reported in normal physiology. We postulate that these features have important implications for therapy as such networks are relatively resistant to perturbation.</p

    Frameless linac-based stereotactic radiosurgery (SRS) for brain metastases: analysis of patient repositioning using a mask fixation system and clinical outcomes

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To assess the accuracy of patient repositioning and clinical outcomes of frameless stereotactic radiosurgery (SRS) for brain metastases using a stereotactic mask fixation system.</p> <p>Patients and Methods</p> <p>One hundred two patients treated consecutively with frameless SRS as primary treatment at University of Rome Sapienza Sant'Andrea Hospital between October 2008 and April 2010 and followed prospectively were involved in the study. A commercial stereotactic mask fixation system (BrainLab) was used for patient immobilization. A computerized tomography (CT) scan obtained immediately before SRS was used to evaluate the accuracy of patient repositioning in the mask by comparing the isocenter position to the isocenter position established in the planning CT. Deviations of isocenter coordinates in each direction and 3D displacement were calculated. Overall survival, brain control, and local control were estimated using the Kaplan-Meier method calculated from the time of SRS.</p> <p>Results</p> <p>The mean measured isocenter displacements were 0.12 mm (SD 0.35 mm) in the lateral direction, 0.2 mm (SD 0.4 mm) in the anteroposterior, and 0.4 mm (SD 0.6 mm) in craniocaudal direction. The maximum displacement of 2.1 mm was seen in craniocaudal direction. The mean 3D displacement was 0.5 mm (SD 0.7 mm), being maximum 2.9 mm. The median survival was 15.5 months, and 1-year and 2-year survival rates were 58% and 24%, respectively. Nine patients recurred locally after SRS, with 1-year and 2-year local control rates of 91% and 82%, respectively. Stable extracranial disease (P = 0.001) and KPS > 70 (P = 0.01) were independent predictors of survival.</p> <p>Conclusions</p> <p>Frameless SRS is an effective treatment in the management of patients with brain metastases. The presented non-invasive mask-based fixation stereotactic system is associated with a high degree of patient repositioning accuracy; however, a careful evaluation is essential since occasional errors up to 3 mm may occur.</p

    Transplantation of Specific Human Astrocytes Promotes Functional Recovery after Spinal Cord Injury

    Get PDF
    Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human astrocytes that appears to be particularly suitable for further development towards clinical application in treating the traumatically injured or diseased human central nervous system

    The Role of Gamma-Band Activity in the Representation of Faces: Reduced Activity in the Fusiform Face Area in Congenital Prosopagnosia

    Get PDF
    Congenital prosopagnosia (CP) describes an impairment in face processing that is presumably present from birth. The neuronal correlates of this dysfunction are still under debate. In the current paper, we investigate high-frequent oscillatory activity in response to faces in persons with CP. Such neuronal activity is thought to reflect higher-level representations for faces.Source localization of induced Gamma-Band Responses (iGBR) measured by magnetoencephalography (MEG) was used to establish the origin of oscillatory activity in response to famous and unknown faces which were presented in upright and inverted orientation. Persons suffering from congenital prosopagnosia (CP) were compared to matched controls.Corroborating earlier research, both groups revealed amplified iGBR in response to upright compared to inverted faces predominately in a time interval between 170 and 330 ms and in a frequency range from 50-100 Hz. Oscillatory activity upon known faces was smaller in comparison to unknown faces, suggesting a "sharpening" effect reflecting more efficient processing for familiar stimuli. These effects were seen in a wide cortical network encompassing temporal and parietal areas involved in the disambiguation of homogenous stimuli such as faces, and in the retrieval of semantic information. Importantly, participants suffering from CP displayed a strongly reduced iGBR in the left fusiform area compared to control participants.In sum, these data stress the crucial role of oscillatory activity for face representation and demonstrate the involvement of a distributed occipito-temporo-parietal network in generating iGBR. This study also provides the first evidence that persons suffering from an agnosia actually display reduced gamma band activity. Finally, the results argue strongly against the view that oscillatory activity is a mere epiphenomenon brought fourth by rapid eye-movements (micro saccades)
    • …
    corecore