53 research outputs found

    Multi-Day Analysis of Surface and Intramuscular EMG for Prosthetic Control

    Get PDF

    Detection of Attempted Stroke Hand Motions from Surface EMG

    Get PDF

    The effect of eye movements in response to different types of scenes using a graph-based visual saliency algorithm

    Get PDF
    Saliency is the quality of an object that makes it stands out from neighbouring items and grabs viewer attention. Regarding image processing, it refers to the pixel or group of pixels that stand out in an image or a video clip and capture the attention of the viewer. Our eye movements are usually guided by saliency while inspecting a scene. Rapid detection of emotive stimuli an ability possessed by humans. Visual objects in a scene are also emotionally salient. As different images and clips can elicit different emotional responses in a viewer such as happiness or sadness, there is a need to measure these emotions along with visual saliency. This study was conducted to determine whether the existing available visual saliency models can also measure emotional saliency. A classical Graph-Based Visual Saliency (GBVS) model is used in the study. Results show that there is low saliency or salient features in sad movies with at least a significant difference of 0.05 between happy and sad videos as well as a large mean difference of 76.57 and 57.0, hence making these videos less emotionally salient. However, overall visual content does not capture emotional salience. The applied Graph-Based Visual Saliencymodel notably identified happy emotions but could not analyze sad emotions.</p

    Melanoma segmentation using deep learning with test-time augmentations and conditional random fields

    Get PDF
    In a computer-aided diagnostic (CAD) system for skin lesion segmentation, variations in shape and size of the skin lesion makes the segmentation task more challenging. Lesion segmentation is an initial step in CAD schemes as it leads to low error rates in quantification of the structure, boundary, and scale of the skin lesion. Subjective clinical assessment of the skin lesion segmentation results provided by current state-of-the-art deep learning segmentation techniques does not offer the required results as per the inter-observer agreement of expert dermatologists. This study proposes a novel deep learning-based, fully automated approach to skin lesion segmentation, including sophisticated pre and postprocessing approaches. We use three deep learning models, including UNet, deep residual U-Net (ResUNet), and improved ResUNet (ResUNet++). The preprocessing phase combines morphological filters with an inpainting algorithm to eliminate unnecessary hair structures from the dermoscopic images. Finally, we used test time augmentation (TTA) and conditional random field (CRF) in the postprocessing stage to improve segmentation accuracy. The proposed method was trained and evaluated on ISIC-2016 and ISIC-2017 skin lesion datasets. It achieved an average Jaccard Index of 85.96% and 80.05% for ISIC-2016 and ISIC-2017 datasets, when trained individually. When trained on combined dataset (ISIC-2016 and ISIC-2017), the proposed method achieved an average Jaccard Index of 80.73% and 90.02% on ISIC-2017 and ISIC-2016 testing datasets. The proposed methodological framework can be used to design a fully automated computer-aided skin lesion diagnostic system due to its high scalability and robustness

    Multiday Evaluation of Techniques for EMG Based Classification of Hand Motions

    Get PDF

    Analysis of Growing Tumor on the Flow Velocity of Cerebrospinal Fluid in Human Brain Using Computational Modeling and Fluid-Structure Interaction

    Get PDF
    Cerebrospinal fluid (CSF) plays a pivotal role in normal functioning of Brain. Intracranial compartments such as blood, brain and CSF are incompressible in nature. Therefore, if a volume imbalance in one of the aforenoted compartments is observed, the other reaches out to maintain net change to zero. Whereas, CSF has higher compliance over long term. However, if the CSF flow is obstructed in the ventricles, this compliance may get exhausted early. Brain tumor on the other hand poses a similar challenge towards destabilization of CSF flow by compressing any section of ventricles thereby ensuing obstruction. To avoid invasive procedures to study effects of tumor on CSF flow, numerical-based methods such as Finite element modeling (FEM) are used which provide excellent description of underlying pathological interaction. A 3D fluid-structure interaction (FSI) model is developed to study the effect of tumor growth on the flow of cerebrospinal fluid in ventricle system. The FSI model encapsulates all the physiological parameters which may be necessary in analyzing intraventricular CSF flow behavior. Findings of the model show that brain tumor affects CSF flow parameters by deforming the walls of ventricles in this case accompanied by a mean rise of 74.23% in CSF flow velocity and considerable deformation on the walls of ventricles

    Rehabilitation of Upper Limb Motor Impairment in Stroke: A Narrative Review on the Prevalence, Risk Factors, and Economic Statistics of Stroke and State of the Art Therapies

    Get PDF
    This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0/Stroke has been one of the leading causes of disability worldwide and is still a social health issue. Keeping in view the importance of physical rehabilitation of stroke patients, an analytical review has been compiled in which different therapies have been reviewed for their effectiveness, such as functional electric stimulation (FES), noninvasive brain stimulation (NIBS) including transcranial direct current stimulation (t-DCS) and transcranial magnetic stimulation (t-MS), invasive epidural cortical stimulation, virtual reality (VR) rehabilitation, task-oriented therapy, robot-assisted training, tele rehabilitation, and cerebral plasticity for the rehabilitation of upper extremity motor impairment. New therapeutic rehabilitation techniques are also being investigated, such as VR. This literature review mainly focuses on the randomized controlled studies, reviews, and statistical meta-analyses associated with motor rehabilitation after stroke. Moreover, with the increasing prevalence rate and the adverse socio-economic consequences of stroke, a statistical analysis covering its economic factors such as treatment, medication and post-stroke care services, and risk factors (modifiable and non-modifiable) have also been discussed. This review suggests that if the prevalence rate of the disease remains persistent, a considerable increase in the stroke population is expected by 2025, causing a substantial economic burden on society, as the survival rate of stroke is high compared to other diseases. Compared to all the other therapies, VR has now emerged as the modern approach towards rehabilitation motor activity of impaired limbs. A range of randomized controlled studies and experimental trials were reviewed to analyse the effectiveness of VR as a rehabilitative treatment with considerable satisfactory results. However, more clinical controlled trials are required to establish a strong evidence base for VR to be widely accepted as a preferred rehabilitation therapy for stroke.Peer reviewe
    corecore