1,689 research outputs found
Matrix Pencils and Entanglement Classification
In this paper, we study pure state entanglement in systems of dimension
. Two states are considered equivalent if they can be
reversibly converted from one to the other with a nonzero probability using
only local quantum resources and classical communication (SLOCC). We introduce
a connection between entanglement manipulations in these systems and the
well-studied theory of matrix pencils. All previous attempts to study general
SLOCC equivalence in such systems have relied on somewhat contrived techniques
which fail to reveal the elegant structure of the problem that can be seen from
the matrix pencil approach. Based on this method, we report the first
polynomial-time algorithm for deciding when two states
are SLOCC equivalent. Besides recovering the previously known 26 distinct SLOCC
equivalence classes in systems, we also determine the
hierarchy between these classes
Comparison of Daily Water Table Depth Prediction by Four Simulation Models
The Agricultural Drainage And Pesticide Transport (ADAPT) model was compared to the water management simulation models DRAINMOD, SWATREN, and PREFLO. SWATREN and PREFLO are one-dimensional finite-difference models while ADAPT and DRAINMOD are one-dimensional mass balance models. ADAPT, an extension of the computer model GLEAMS, also provides chemical transport information. All four models were tested against field data from Aurora, North Carolina. Observed water table depth data were collected during 1973 through 1977 from a water table management field experiment with three subsurface drain spacing treatments of 7.5, 15, and 30 m.
Both the standard error of estimate and the average absolute deviation were computed between measured and predicted midpoint water table depths. For the five-year period ADAPT, DRAINMOD, SWATREN, and PREFLO had standard errors of estimated water table depth of 0.18, 0.19, 0.19, and 0.18 m and absolute deviations of 0.14, 0.14, 0.14, and 0.14 m, respectively. The results show good agreement between the models for this experimental site and encourage the further adoption of ADAPT to predict chemical transport
Astronomical Sky Quality Near Eureka, in the Canadian High Arctic
Nighttime visible-light sky brightness and transparency are reported for the
Polar Environment Research Laboratory (PEARL), located on a 610-m high ridge
near the Eureka research station, on Ellesmere Island, Canada. Photometry of
Polaris obtained in V band with the PEARL All Sky Imager (PASI) over two
winters is supported by standard meteorological measurements and visual
estimates of sky conditions from sea level. These data show that during the
period of the study, October through March of 2008/09 and 2009/10, the sky near
zenith had a mean surface brightness of 19.7 mag/square-arcsec when the sun was
more than 12 deg below the horizon, reaching 20.7 mag/square-arcsec during
astronomical darkness with no moon. Skies were without thick cloud and
potentially usable for astronomy 86% of the time (extinction <2 mag). Up to 68%
of the time was spectroscopic (<0.5 mag), attenuated by ice crystals, or clear
with stable atmospheric transparency. Those conditions can persist for over 100
hours at a time. Further analysis suggests the sky was entirely free of ice
crystals (truly photometric) 48+/-3% of the time at PEARL in winter, and that a
higher elevation location nearby may be better.Comment: 14 pages, 1 table, 11 figures; accepted for publication in PAS
Dark cloud cores and gravitational decoupling from turbulent flows
We test the hypothesis that the starless cores may be gravitationally bound
clouds supported largely by thermal pressure by comparing observed molecular
line spectra to theoretical spectra produced by a simulation that includes
hydrodynamics, radiative cooling, variable molecular abundance, and radiative
transfer in a simple one-dimensional model. The results suggest that the
starless cores can be divided into two categories: stable starless cores that
are in approximate equilibrium and will not evolve to form protostars, and
unstable pre-stellar cores that are proceeding toward gravitational collapse
and the formation of protostars. The starless cores might be formed from the
interstellar medium as objects at the lower end of the inertial cascade of
interstellar turbulence. Additionally, we identify a thermal instability in the
starless cores. Under par ticular conditions of density and mass, a core may be
unstable to expansion if the density is just above the critical density for the
collisional coupling of the gas and dust so that as the core expands the
gas-dust coupling that cools the gas is reduced and the gas warms, further
driving the expansion.Comment: Submitted to Ap
Passive Attitude Control to Decrease CubeSatellite Complexity
Attitude control is often a requirement for the optimal functionality of satellite payloads. The McMaster Neutron Dosimetry and Exploration (NEUDOSE) mission aims to measure charged and neutral radiation in Low Earth Orbit. NEUDOSE can detect particles effectively from any direction due to its spherical symmetry, meaning unlike most satellite missions, it does not require attitude control to function. The attitude is still crucial for the mission in order to achieve optimal communication. The NEUDOSE satellite utilizes Ultra High Frequency and Very High Frequency dipole antennas for communication. If the satellite’s attitude lines up in a specific orientation, communication will be hindered due to the nature of the antenna’s radiation pattern. With short access times to the ground station, and relatively small amounts of data being transferred, effective communication is important for the success of the mission. Initially the NEUDOSE mission had an active attitude control system, but with the lack of pointing requirements for the payload’s operation, and a stringent power budget, the active system was removed. A passive magnetic attitude control system was then explored as a solution to optimize communication, without adding much complexity or burden on the power budget
An automated method for analysis of microcirculation videos for accurate assessment of tissue perfusion
Abstract
Background
Imaging of the human microcirculation in real-time has the potential to detect injuries and illnesses that disturb the microcirculation at earlier stages and may improve the efficacy of resuscitation. Despite advanced imaging techniques to monitor the microcirculation, there are currently no tools for the near real-time analysis of the videos produced by these imaging systems. An automated system tool that can extract microvasculature information and monitor changes in tissue perfusion quantitatively might be invaluable as a diagnostic and therapeutic endpoint for resuscitation.
Methods
The experimental algorithm automatically extracts microvascular network and quantitatively measures changes in the microcirculation. There are two main parts in the algorithm: video processing and vessel segmentation. Microcirculatory videos are first stabilized in a video processing step to remove motion artifacts. In the vessel segmentation process, the microvascular network is extracted using multiple level thresholding and pixel verification techniques. Threshold levels are selected using histogram information of a set of training video recordings. Pixel-by-pixel differences are calculated throughout the frames to identify active blood vessels and capillaries with flow.
Results
Sublingual microcirculatory videos are recorded from anesthetized swine at baseline and during hemorrhage using a hand-held Side-stream Dark Field (SDF) imaging device to track changes in the microvasculature during hemorrhage. Automatically segmented vessels in the recordings are analyzed visually and the functional capillary density (FCD) values calculated by the algorithm are compared for both health baseline and hemorrhagic conditions. These results were compared to independently made FCD measurements using a well-known semi-automated method. Results of the fully automated algorithm demonstrated a significant decrease of FCD values. Similar, but more variable FCD values were calculated using a commercially available software program requiring manual editing.
Conclusions
An entirely automated system for analyzing microcirculation videos to reduce human interaction and computation time is developed. The algorithm successfully stabilizes video recordings, segments blood vessels, identifies vessels without flow and calculates FCD in a fully automated process. The automated process provides an equal or better separation between healthy and hemorrhagic FCD values compared to currently available semi-automatic techniques. The proposed method shows promise for the quantitative measurement of changes occurring in microcirculation during injury.http://deepblue.lib.umich.edu/bitstream/2027.42/112336/1/12880_2011_Article_161.pd
The Different Structures of the Two Classes of Starless Cores
We describe a model for the thermal and dynamical equilibrium of starless
cores that includes the radiative transfer of the gas and dust and simple CO
chemistry. The model shows that the structure and behavior of the cores is
significantly different depending on whether the central density is either
above or below about 10^5 cm-3. This density is significant as the critical
density for gas cooling by gas-dust collisions and also as the critical density
for dynamical stability, given the typical properties of the starless cores.
The starless cores thus divide into two classes that we refer to as thermally
super-critical and thermally sub-critical.This two-class distinction allows an
improved interpretation of the different observational data of starless cores
within a single model.Comment: ApJ in pres
Human Direct Skin Feeding Versus Membrane Feeding to Assess the Mosquitocidal Efficacy of High-Dose Ivermectin (IVERMAL Trial)
Item does not contain fulltex
- …