576 research outputs found

    Solid immersion lens applications for nanophotonic devices

    Get PDF
    Solid immersion lens (SIL) microscopy combines the advantages of conventional microscopy with those of near-field techniques, and is being increasingly adopted across a diverse range of technologies and applications. A comprehensive overview of the state-of-the-art in this rapidly expanding subject is therefore increasingly relevant. Important benefits are enabled by SIL-focusing, including an improved lateral and axial spatial profiling resolution when a SIL is used in laser-scanning microscopy or excitation, and an improved collection efficiency when a SIL is used in a light-collection mode, for example in fluorescence micro-spectroscopy. These advantages arise from the increase in numerical aperture (NA) that is provided by a SIL. Other SIL-enhanced improvements, for example spherical-aberration-free sub-surface imaging, are a fundamental consequence of the aplanatic imaging condition that results from the spherical geometry of the SIL. Beginning with an introduction to the theory of SIL imaging, the unique properties of SILs are exposed to provide advantages in applications involving the interrogation of photonic and electronic nanostructures. Such applications range from the sub-surface examination of the complex three-dimensional microstructures fabricated in silicon integrated circuits, to quantum photoluminescence and transmission measurements in semiconductor quantum dot nanostructures

    Self-consistent Coulomb effects and charge distribution of quantum dot arrays

    Full text link
    This paper considers the self-consistent Coulomb interaction within arrays of self-assembled InAs quantum dots (QDs) which are embedded in a pn structure. Strong emphasis is being put on the statistical occupation of the electronic QD states which has to be solved self-consistently with the actual three-dimensional potential distribution. A model which is based on a Green's function formalism including screening effects is used to calculate the interaction of QD carriers within an array of QDs, where screening due to the inhomogeneous bulk charge distribution is taken into acount. We apply our model to simulate capacitance-voltage (CV) characteristics of a pn structure with embedded QDs. Different size distributions of QDs and ensembles of spatially perodic and randomly distributed arrays of QDs are investigated.Comment: submitted to pr

    Scaling Of Chiral Lagrangians And Landau Fermi Liquid Theory For Dense Hadronic Matter

    Get PDF
    We discuss the Fermi-liquid properties of hadronic matter derived from a chiral Lagrangian field theory in which Brown-Rho (BR) scaling is incorporated. We identify the BR scaling as a contribution to Landau's Fermi liquid fixed-point quasiparticle parameter from "heavy" isoscalar meson degrees of freedom that are integrated out from a low-energy effective Lagrangian. We show that for the vector (convection) current, the result obtained in the chiral Lagrangian approach agrees precisely with that obtained in the semi-phenomenological Landau-Migdal approach. This precise agreement allows one to determine the Landau parameter that enters in the effective nucleon mass in terms of the constant that characterizes BR scaling. When applied to the weak axial current, however, these two approaches differ in a subtle way. While the difference is small numerically, the chiral Lagrangian approach implements current algebra and low-energy theorems associated with the axial response that the Landau method misses and hence is expected to be more predictive.Comment: 39 pages, latex with 4 eps figure, modified addresses and reference

    Rotational and vibrational spectra of quantum rings

    Full text link
    One can confine the two-dimensional electron gas in semiconductor heterostructures electrostatically or by etching techniques such that a small electron island is formed. These man-made ``artificial atoms'' provide the experimental realization of a text-book example of many-particle physics: a finite number of quantum particles in a trap. Much effort was spent on making such "quantum dots" smaller and going from the mesoscopic to the quantum regime. Far-reaching analogies to the physics of atoms, nuclei or metal clusters were obvious from the very beginning: The concepts of shell structure and Hund's rules were found to apply -- just as in real atoms! In this Letter, we report the discovery that electrons confined in ring-shaped quantum dots form rather rigid molecules with antiferromagnetic order in the ground state. This can be seen best from an analysis of the rotational and vibrational excitations

    Energy levels and far-infrared spectroscopy for two electrons in a semiconductor nanoring

    Full text link
    The effects of electron-electron interaction of a two-electron nanoring on the energy levels and far-infrared (FIR) spectroscopy have been investigated based on a model calculation which is performed within the exactly numerical diagonalization. It is found that the interaction changes the energy spectra dramatically, and also shows significant influence on the FIR spectroscopy. The crossings between the lowest spin-singlet and triplet states induced by the coulomb interaction are clearly revealed. Our results are related to the experiment recently carried out by A. Lorke et al. [Phys. Rev. Lett. 84, 2223 (2000)].Comment: 17 pages, 6 figures, revised and accepted by Phys. Rev. B (Dec. 15

    Relativistic mean-field study of neutron-rich nuclei

    Get PDF
    A relativistic mean-field model is used to study the ground-state properties of neutron-rich nuclei. Nonlinear isoscalar-isovector terms, unconstrained by present day phenomenology, are added to the model Lagrangian in order to modify the poorly known density dependence of the symmetry energy. These new terms soften the symmetry energy and reshape the theoretical neutron drip line without compromising the agreement with existing ground-state information. A strong correlation between the neutron radius of 208Pb and the binding energy of valence orbitals is found: the smaller the neutron radius of 208Pb, the weaker the binding energy of the last occupied neutron orbital. Thus, models with the softest symmetry energy are the first ones to drip neutrons. Further, in anticipation of the upcoming one-percent measurement of the neutron radius of 208Pb at the Thomas Jefferson Laboratory, a close relationship between the neutron radius of 208Pb and neutron radii of elements of relevance to atomic parity-violating experiments is established.Comment: 14 pages, 5 figure

    Coulomb and nuclear breakup effects in the single neutron removal reaction 197Au(17C,16C gamma)X

    Get PDF
    We analyze the recently obtained new data on the partial cross sections and parallel momentum distributions for transitions to ground as well as excited states of the 16C core, in the one-neutron removal reaction 197Au(17C,16C gamma)X at the beam energy of 61 MeV/nucleon. The Coulomb and nuclear breakup components of the one-neutron removal cross sections have been calculated within a finite range distorted wave Born approximation theory and an eikonal model, respectively. The nuclear contributions dominate the partial cross sections for the core excited states. By adding the nuclear and Coulomb cross sections together, a reasonable agreement is obtained with the data for these states. The shapes of the experimental parallel momentum distributions of the core states are described well by the theory.Comment: Revtex format, two figures included, to appear in Phys. Rev. C. (Rapid communications

    Magneto-transport in periodic and quasiperiodic arrays of mesoscopic rings

    Full text link
    We study theoretically the transmission properties of serially connected mesoscopic rings threaded by a magnetic flux. Within a tight-binding formalism we derive exact analytical results for the transmission through periodic and quasiperiodic Fibonacci arrays of rings of two different sizes. The role played by the number of scatterers in each arm of the ring is analyzed in some detail. The behavior of the transmission coefficient at a particular value of the energy of the incident electron is studied as a function of the magnetic flux (and vice versa) for both the periodic and quasiperiodic arrays of rings having different number of atoms in the arms. We find interesting resonance properties at specific values of the flux, as well as a power-law decay in the transmission coefficient as the number of rings increases, when the magnetic field is switched off. For the quasiperiodic Fibonacci sequence we discuss various features of the transmission characteristics as functions of energy and flux, including one special case where, at a special value of the energy and in the absence of any magnetic field, the transmittivity changes periodically as a function of the system size.Comment: 9 pages with 7 .eps figures included, submitted to PR

    Anisotropic splitting of intersubband spin plasmons in quantum wells with bulk and structural inversion asymmetry

    Get PDF
    In semiconductor heterostructures, bulk and structural inversion asymmetry and spin-orbit coupling induce a k-dependent spin splitting of valence and conduction subbands, which can be viewed as being caused by momentum-dependent crystal magnetic fields. This paper studies the influence of these effective magnetic fields on the intersubband spin dynamics in an asymmetric n-type GaAs/AlGaAs quantum well. We calculate the dispersions of intersubband spin plasmons using linear response theory. The so-called D'yakonov-Perel' decoherence mechanism is inactive for collective intersubband excitations, i.e., crystal magnetic fields do not lead to decoherence of spin plasmons. Instead, we predict that the main signature of bulk and structural inversion asymmetry in intersubband spin dynamics is a three-fold, anisotropic splitting of the spin plasmon dispersion. The importance of many-body effects is pointed out, and conditions for experimental observation with inelastic light scattering are discussed.Comment: 8 pages, 6 figure
    corecore