31 research outputs found

    Yeast Probiotics Shape the Gut Microbiome and Improve the Health of Early-Weaned Piglets

    Get PDF
    Weaning is one of the most stressful challenges in the pig’s life, which contributes to dysfunctions of intestinal and immune system, disrupts the gut microbial ecosystem, and therefore compromises the growth performance and health of piglets. To mitigate the negative impact of the stress on early-weaned piglets, effective measures are needed to promote gut health. Toward this end, we tamed a Saccharomyces cerevisiae strain and developed a probiotic Duan-Nai-An, which is a yeast culture of the tamed S. cerevisiae on egg white. In this study, we tested the performance of Duan-Nai-An on growth and health of early-weaned piglets and analyzed its impact on fecal microbiota. The results showed that Duan-Nai-An significantly improved weight gain and feed intake, and reduced diarrhea and death of early-weaned piglets. Analysis of the gut microbiota showed that the bacterial community was shaped by Duan-Nai-An and maintained as a relatively stable structure, represented by a higher core OTU number and lower unweighted UniFrac distances across the early weaned period. However, fungal community was not significantly shaped by the yeast probiotics. Notably, 13 bacterial genera were found to be associated with Duan-Nai-An feeding, including Enterococcus, Succinivibrio, Ruminococcus, Sharpea, Desulfovibrio, RFN20, Sphaerochaeta, Peptococcus, Anaeroplasma, and four other undefined genera. These findings suggest that Duan-Nai-An has the potential to be used as a feed supplement in swine production

    Influence of Fe-rich phases and precipitates on the mechanical behaviour of Al-Cu-Mn-Fe-Sc-Zr alloys studied by synchrotron X-ray and neutron

    Get PDF
    A multiscale methodology using scanning and transmission electron microscope, synchrotron X-ray nano-tomography and micro-tomography, small angle neutron scattering, and in situ synchrotron X-ray diffraction has been used, to reveal the effect of Fe-rich phases and precipitates on the mechanical behaviour of an Al-Cu-Mn-Fe-Sc-Zr alloy. The α-Al grains size is reduced from 185.1 μm (0 MPa) and 114.3 μm (75 MPa) by applied pressure. Moreover, it has been demonstrated that suitable heat treatments modify the 3D morphology of Fe-rich phases from interconnected to a disaggregated structure that improves the mechanical properties of the alloy. The size and morphology evolution of fine precipitates under different ageing temperature and time are revealed. At ageing temperature of 160 °C, the precipitates change from GP zones to θ' (around 75 nm in length) with ageing time increasing from 1 h to 24 h; the Vickers hardness increases from 72.0 HV to 110.7HV. The high ductility of the Sc, Zr modified Al-Cu alloy is related to the complex shape and the loss of interconnectivity of the Fe-rich particles due to the heat treatment. The evolution of the crystal lattice strains in α-Al, and β-Fe calculated during tensile test using in-situ synchrotron X-ray diffraction corroborates the influence of the microstructure in the ductility of the modified alloy.This work was financially supported by the Natural Science Foundation of China (Nos. 52104373 and 51901042), the Basic and Applied Basic Foundation of Guangdong Province, China (Nos. 2020B1515120065 and 2021B1515140028); the Guangdong Province Office of Education, China (No. 2018KQNCX256). We also would like to thank the WL13HB beamline and WL14B1 beamline of Shanghai Synchrotron Radiation Facility, SSRF, China; 4W1A beamline of Beijing Synchrotron Radiation Facility, BSRF, China for provision of synchrotron radiation beamtime; and Small Angle Neutron Scattering (SANS) Beamline in China Spallation Neutron Source (CSNS, Dongguan, China) for providing neutron beamtime

    Construction of porous hierarchical NiCo2S4 toward high rate performance supercapacitor

    Get PDF
    Developing high-performance supercapacitors is an effective way to satisfy the ever-increasing energy storage demand for emerging devices, but the inferior rate performance of battery-type supercapacitors limits their large-scale utilization. Herein, porous hierarchical nickel cobalt sulfide (NiCo2S4) was constructed by a novel strategy that the synthesized nickel cobalt oxide nanosheets as chemical template for hydrothermal method. Furthermore, the backbone of nickel cobalt oxide nanosheets can finally convert to NiCo2S4, which both plays the role of matrix to buffer the volume variation and enhances entire conductivity. Benefiting from high specific area (79.9 m2 g−1), suitable nanopores for KOH electrolyte, high conductivity, and multiple Co/Ni valence, the hierarchical NiCo2S4 electrode delivers a high specific capacity of 1035.1 F g−1 at the current density of 1 A g−1, and an ultrahigh rate performance of 80.9% capacitance retention at 20 A g−1 was obtained. The assembled asymmetric supercapacitor device could achieve the maximum capacity of 102.4 F g−1 at 5 mV s−1 and maintain at 80.5 F g−1 at 50 mV s−1, indicating its superior rate ability. In addition, the highest energy density of 35.4 Wh kg−1 can be obtained at a power density of 0.4 kW kg−1. These results indicate that the porous hierarchical NiCo2S4 could be served as high rate performance electrode materials for advanced supercapacitors

    A B5G Non-Terrestrial-Network (NTN) and Hybird Constellation Based Data Collection System (DCS)

    No full text
    In beyond 5G (B5G) non-terrestrial network (NTN) systems, satellite technologies play an important role. Especially for data collection systems (DCS), low-earth orbit satellites have many advantages. Such as global coverage, low latency, and high efficiency. As a miniaturization technology, CubeSat has attracted extensive attention from a large number of scholars. Satellite constellations can coordinate for distributed tasks. This paper proposes a B5G NTN-based data collection system. A CubeSat constellation achieves global coverage as the basic space platform for DCS. The 5G terrestrial network is used as the data bearer network of the gateway station. A traffic load balance strategy is proposed to optimize the system’s efficiency. As a unified hardware platform, software-defined radio (SDR) is compatible with various sensor data models. Finally, the design was verified by a series of experiments

    Astragalus membranaceus Injection Suppresses Production of Interleukin-6 by Activating Autophagy through the AMPK-mTOR Pathway in Lipopolysaccharide-Stimulated Macrophages

    No full text
    Astragalus membranaceus (AM), used in traditional Chinese medicine, has been shown to enhance immune functions, and recently, its anti-inflammatory effects were identified. However, the mechanisms of action remain unclear. Most studies have shown that autophagy might be involved in the immune response of the body, including inflammation. Here, we developed an inflammatory model by stimulating macrophages with lipopolysaccharides (LPS) to explore the anti-inflammatory effect and mechanisms of AM injection from the perspective of the regulation of autophagy. Immunoblot, immunofluorescence, and ELISA were used to determine the effects of AM injection on the production of interleukin-6 (IL-6) and alterations of autophagy markers. It was found that AM injection reduced the expression of IL-6 in LPS-stimulated macrophages and reversed the LPS-induced inhibition of cellular autophagy. After treatment with inhibitors of signaling pathways, it was shown that LPS downregulated autophagy and upregulated the production of IL-6 in macrophages via the protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. AM injection reversed the effects of LPS by activating the AMP-activated protein kinase (AMPK) instead of inhibiting Akt. These results were further confirmed by testing activators and siRNA silencing of AMPK. Hence, these 2 distinct signaling molecules appear to exert opposite effects on mTOR, which integrates information from multiple upstream signaling pathways, negatively regulating autophagy. In addition, we demonstrated that autophagy might play a key role in regulating the production of IL-6 by testing activators and inhibitors of autophagy and siRNA silencing of ATG5. These findings showed that AM injection might enhance autophagy by activating AMPK and might further play a repressive effect on the LPS-stimulated expression of IL-6. This study explored the relationship between autophagy, signaling pathways, and the production of inflammatory factors in a model of endotoxin infection and treatment with AM injection

    Changes in vegetation after 22 years\u27 natural restoration in the Karst disturbed area in northwestern Guangxi, China

    No full text
    Variations of plant vegetation and spatial distribution were investigated in the areas of 4 types of typical disturbance, which had been under natural restoration for 22 years in the Karst area in northwestern Guangxi while the climax plant community was utilized as control. The slope scale and disturbance theory were used to study the plant diversity in the whole area and selected plots. It is clear that the disturbance had resulted in severe loss of plant species, and only 241 species of vascular plants that belong to 91 families and 206 genera survived in disturbed areas, accounting only for 26.6% of those in the natural reserve area. The consequent succession of 6 types of plant vegetation was sparse grass of rocky desertification, grass, shrub, liana-shrub, deciduous broad-leaved forest and mixed segment of evergreen and deciduous broad-leaved forest. The height, coverage, biomass and species diversity of plants decreased sharply with slope elevating, and the plant density appeared with normal distribution. Compared with the natural reserve area, all indices of plant vegetation in disturbed areas were much worse. Furthermore, different types of disturbance showed various affections on natural vegetative restoration, among which tilling after the whole slope was set on fire caused the worst impact and rocky desertification was the consequence, followed by depasturing after the whole slope was set on fire. Cutting was selective disturbance, and the vegetative restoration in the area with combination of cutting, grazing and setting on fire on the upper slope was relatively fast; however, it was even better in the area with combination of cutting and setting the upper slope on fire. In our studies, 4 strategies for vegetative recovery, using both natural and artificial approaches, were established, which were suitable for the Karst area in northwestern Guangxi

    Molecular epidemiology and characterization of antimicrobial-resistant Staphylococcus haemolyticus strains isolated from dairy cattle milk in Northwest, China

    Get PDF
    IntroductionNon-aureus Staphylococcus (NAS) species are currently the most commonly identified microbial agents causing sub-clinical infections of the udder and are also deemed as opportunistic pathogens of clinical mastitis in dairy cattle. More than 10 NAS species have been identified and studied but little is known about S. haemolyticus in accordance with dairy mastitis. The present study focused on the molecular epidemiology and genotypic characterization of S. haemolyticus isolated from dairy cattle milk in Northwest, China.MethodsIn this study, a total of 356 milk samples were collected from large dairy farms in three provinces in Northwest, China. The bacterial isolation and presumptive identification were done by microbiological and biochemical methods following the molecular confirmation by 16S rRNA gene sequencing. The antimicrobial susceptibility testing (AST) was done by Kirby-Bauer disk diffusion assay and antibiotic-resistance genes (ARGs) were identified by PCR. The phylogenetic grouping and sequence typing was done by Pulsed Field Gel Electrophoresis (PFGE) and Multi-Locus Sequence Typing (MLST) respectively.ResultsIn total, 39/356 (11.0%) were identified as positive for S. haemolyticus. The overall prevalence of other Staphylococcus species was noted to be 39.6% (141/356), while the species distribution was as follows: S. aureus 14.9%, S. sciuri 10.4%, S. saprophyticus 7.6%, S. chromogenes 4.2%, S. simulans 1.4%, and S. epidermidis 1.1%. The antimicrobial susceptibility of 39 S. haemolyticus strains exhibited higher resistance to erythromycin (92.3%) followed by trimethoprim-sulfamethoxazole (51.3%), ciprofloxacin (43.6%), florfenicol (30.8%), cefoxitin (28.2%), and gentamicin (23.1%). All of the S. haemolyticus strains were susceptible to tetracycline, vancomycin, and linezolid. The overall percentage of multi-drug resistant (MDR) S. haemolyticus strains was noted to be 46.15% (18/39). Among ARGs, mphC was identified as predominant (82.05%), followed by ermB (33.33%), floR (30.77%), gyrA (30.77%), sul1 (28.21%), ermA (23.08%), aadD (12.82%), grlA (12.82%), aacA-aphD (10.26%), sul2 (10.26%), dfrA (7.69%), and dfrG (5.13%). The PFGE categorized 39 S. haemolyticus strains into A-H phylogenetic groups while the MLST categorized strains into eight STs with ST8 being the most predominant while other STs identified were ST3, ST11, ST22, ST32, ST19, ST16, and ST7.ConclusionThese findings provided new insights into our understanding of the epidemiology and genetic characteristics of S. haemolyticus in dairy farms to inform interventions limiting the spread of AMR in dairy production

    Tuning the Doping Ratio and Phase Transition Temperature of VO2 Thin Film by Dual-Target Co-Sputtering

    No full text
    A new simple way for tuning the phase transition temperature (PTT) of VO2 thin films has been proposed to solve the problem of changing the doping ratio by using the dual-target co-sputtering method. A series of samples with W doping ratios of 0%, 0.5%, 1%, 1.5% and 2% have been fabricated by sputtering V films with the power of pure and 2% W-doped V targets from 500 W: 0 W, 500 W: 250 W, 500 W: 500 W, 250 W: 500 W to 0 W: 500 W respectively and then annealed in an oxygen atmosphere to form VO2. The XRD results of both pure and W-doped VO2 samples reveal that VO2 forms and is the main component after annealing. The PTT can be tuned by controlling the sputtering power ratio of the pure and doped targets. It can be tuned easily from 64.3 °C to 36.5 °C by using the pure and 2% W-doped targets for demonstration, with W doping ratios from 0% to 2%. It is also valid for other doping elements and is a promising approach for the large-scale production of sputtering

    Unique diversity of the venom peptides from the scorpion Androctonus bicolor revealed by transcriptomic and proteomic analysis

    No full text
    Androctonus bicolor is one of the most poisonous scorpion species in the world. However, little has been known about the venom composition of the scorpion. To better understand the molecular diversity and medical significance of the venom from the scorpion, we systematically analyzed the venom components by combining transcriptomic and proteomic surveys. Random sequencing of 1000 clones from a cDNA library prepared from the venom glands of the scorpion revealed that 70% of the total transcripts code for venom peptide precursors. Our efforts led to a discovery of 103 novel putative venom peptides. These peptides include NaTx-like, ICTx-like and CaTx-like peptides, putative antimicrobial peptides, defensin-like peptides, BPP-like peptides, BmKa2-like peptides, Kunitz-type toxins and some new-type venom peptides without disulfide bridges, as well as many new-type venom peptides that are cross-linked with one, two, three, five or six disulfide bridges, respectively. We also identified three peptides that are identical to known toxins from scorpions. The venom was also analyzed using a proteomic technique. The presence of a total of 16 different venom peptides was confirmed by LC-MS/MS analysis. The discovery of a wide range of new and new-type venom peptides highlights the unique diversity of the venom peptides from A. bicolor. These data also provide a series of novel templates for the development of therapeutic drugs for treating ion channel-associated diseases and infections caused by antibiotic-resistant pathogens, and offer molecular probes for the exploration of structures and functions of various ion channels. (C) 2015 Elsevier B.V. All rights reserved
    corecore