1 research outputs found
Aperiodic dynamical decoupling sequences in presence of pulse errors
Dynamical decoupling (DD) is a promising tool for preserving the quantum
states of qubits. However, small imperfections in the control pulses can
seriously affect the fidelity of decoupling, and qualitatively change the
evolution of the controlled system at long times. Using both analytical and
numerical tools, we theoretically investigate the effect of the pulse errors
accumulation for two aperiodic DD sequences, the Uhrig's DD UDD) protocol [G.
S. Uhrig, Phys. Rev. Lett. {\bf 98}, 100504 (2007)], and the Quadratic DD (QDD)
protocol [J. R. West, B. H. Fong and D. A. Lidar, Phys. Rev. Lett {\bf 104},
130501 (2010)]. We consider the implementation of these sequences using the
electron spins of phosphorus donors in silicon, where DD sequences are applied
to suppress dephasing of the donor spins. The dependence of the decoupling
fidelity on different initial states of the spins is the focus of our study. We
investigate in detail the initial drop in the DD fidelity, and its long-term
saturation. We also demonstrate that by applying the control pulses along
different directions, the performance of QDD protocols can be noticeably
improved, and explain the reason of such an improvement. Our results can be
useful for future implementations of the aperiodic decoupling protocols, and
for better understanding of the impact of errors on quantum control of spins.Comment: updated reference