187 research outputs found

    Multi-timescale Solar Cycles and the Possible Implications

    Full text link
    Based on analysis of the annual averaged relative sunspot number (ASN) during 1700 -- 2009, 3 kinds of solar cycles are confirmed: the well-known 11-yr cycle (Schwabe cycle), 103-yr secular cycle (numbered as G1, G2, G3, and G4, respectively since 1700); and 51.5-yr Cycle. From similarities, an extrapolation of forthcoming solar cycles is made, and found that the solar cycle 24 will be a relative long and weak Schwabe cycle, which may reach to its apex around 2012-2014 in the vale between G3 and G4. Additionally, most Schwabe cycles are asymmetric with rapidly rising-phases and slowly decay-phases. The comparisons between ASN and the annual flare numbers with different GOES classes (C-class, M-class, X-class, and super-flare, here super-flare is defined as \geq X10.0) and the annal averaged radio flux at frequency of 2.84 GHz indicate that solar flares have a tendency: the more powerful of the flare, the later it takes place after the onset of the Schwabe cycle, and most powerful flares take place in the decay phase of Schwabe cycle. Some discussions on the origin of solar cycles are presented.Comment: 8 pages, 4 figure

    Hydrostatic Level Sensors as High Precision Ground Motion Instrumentation for Tevatron and Other Energy Frontier Accelerators

    Full text link
    Particle accelerators pushed the limits of our knowledge in search of the answers to most fundamental questions about micro-world and our Universe. In these pursuits, accelerators progressed to higher and higher energies and particle beam intensities as well as increasingly smaller and smaller beam sizes. As the result, modern existing and planned energy frontier accelerators demand very tight tolerances on alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the instruments developed for and used in such accelerators as Fermilab's Tevatron (FNAL, Batavia, IL USA) and for the studies toward an International Linear Collider (ILC). The instrumentation includes Hydrostatic Level Sensors (HLS) for very low frequency measurements. We present design features of the sensors, outline their technical parameters, describe test and calibration procedures and discuss different regimes of operation. Experimental results of the ground motion measurements with these detectors will be presented in subsequent paper

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin

    Body-centered-cubic Ni and its magnetic properties

    Get PDF
    The body-centered-cubic (bec) phase of Ni, which does not exist in nature, has been achieved as a thin film on GaAs(001) at 170 K via molecular beam epitaxy. The bec Ni is ferromagnetic with a Curie temperature of 456 K and possesses a magnetic moment of 0.52 \uc2\ub1 0.08 \uce\ubcB/atom. The cubic magneto-crystalline anisotropy of bec Ni is determined to be +4.0 \uc3\u97 105 ergs \uc2\ub7 cm-3, as opposed to -5.7 \uc3\u97 10 4 ergs \uc2\ub7 cm-3 for the naturally occurring face-centered-cubic (fcc) Ni. This sharp contrast in the magnetic anisotropy is attributed to the different electronic band structures between bec Ni and fcc Ni, which are determined using angle-resolved photoemission with synchrotron radiation

    Relationship Between the Thermodynamic Parameters, Structure, and Anticorrosion Properties of Al-Zr-Ni-Fe-Y Alloys

    Get PDF
    The influence of the chemical composition on the crystallization process, amorphous phase formation, and the anticorrosion properties of Al-Zr-Ni-Fe-Y alloys are presented. To reduce the number of experiments, a thermodynamic approach was applied in which the entropy and Gibbs free energy of representative alloys were optimized. The low glass-forming ability of Al-Zr-Ni-Fe-Y alloy systems was related to the crystallization of the Al3Zr phase from the melt. The structural analysis showed that phases containing Ni and Fe, such as Al19Ni5Y3, Al10Fe2Y, and Al23Ni6Y4, played a key role in the formation of amorphous alloys. According to this, the simultaneous addition of Ni/Fe and Y is important to prevent the crystallization of Al-based alloys in the melt. The formation of an amorphous phase in Al80Zr5Ni5Fe5Y5 alloys and the complete amorphization of Al85Ni5Fe5Y5 alloys were responsible for the high corrosion resistance compared with fully crystalline alloys. Moreover, the addition of Y had a significant impact on the anticorrosion properties. The XPS results showed that the alloys tended to form a passive Al2O3 and Y2O3 layer on the surface

    Ethylene-regulated gene expression in tomato fruit: characterization of novel ethylene-responsive and ripeningrelated genes isolated by differential display.

    Get PDF
    Differential display was used to isolate early ethyleneregulated genes from late immature green tomato fruit in order to obtain a broader understanding of the molecular basis by which ethylene coordinates the ripening process. Nineteen novel ethylene-responsive (ER) cDNA clones were isolated that fell into three classes: (i) ethylene up-regulated (ii) ethylene downregulated, and (iii) transiently induced. Expression analysis revealed that ethylene-dependent changes in mRNA accumulation occurred rapidly (15 min) for most of the ER clones. The predicted proteins encoded by the ER genes are putatively involved in processes as diverse as primary metabolism, hormone signalling and stress responses. Although a number of the isolated ER clones correspond to genes already documented in other species, their responsiveness to ethylene is described here for the ®rst time. Among the ER clones sharing high homology with regulatory genes, ER43, a putative GTP-binding protein, and ER50, a CTR1-like clone, are potentially involved in signal transduction. ER24 is homologous to the multiprotein bridging factor MBF1 involved in transcriptional activation, and ®nally, two clones are homologous to genes involved in post-transcriptional regulation: ER49, a putative translational elongation factor, and ER68, a mRNA helicase-like gene. Six ER clones correspond to as yet unidenti®ed genes. The expression studies indicated that all the ER genes are ripening-regulated, and, depending on the clone, show changes in transcript accumulation either at the breaker, turning, or red stage. Analysis of transcript accumulation in different organs indicated a strong bias towards expression in the fruit for many of the clones. The potential roles for some of the ER clone

    An Observational Overview of Solar Flares

    Full text link
    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.Comment: This is an article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011
    corecore