300 research outputs found
Molecular Dynamic Simulation of the Effect of Initial Surface Temperature on Arc Erosion Due to Ion Bombardment
This study focuses on the effects of initial surface temperature on arc erosion caused by ion bombardment. The simulation results show that higher surface temperature leads to a greater number of lost Cu atoms and an increased size of the erosion crater. This is due to the ability of the incident ions to have a greater sputtering yield at higher temperatures. Moreover, the Cu atoms tend to agglomerate and form clusters after ion bombardment while leaving the surface
Electrical performance of ester liquids under impulse voltage for application in power transformers
Ester liquids including both natural ester and synthetic ester are being considered as potential alternatives to mineral oil, due to their better environmental performance and for some liquids their higher fire point. Although these liquids have been widely used in distribution and traction transformers, it is still a significant step to adopt ester liquids in high-voltage power transformers because the high cost and severe consequence of a factory test failure and the high level of safety and reliability required in service for these units, tend to lead to a cautious approach to any step change in technology. Lightning impulse strength as basic insulation level is of importance for insulation design of power transformers and lightning impulse test is commonly required in the factory routine tests for high-voltage power transformers, so this thesis is aimed to investigate the electrical performances including pre-breakdown and breakdown of natural ester and synthetic ester under impulse voltage. Two types of field geometry were considered in the study, one is sphere-sphere configuration which represents the quasi-uniform fields inside a transformer and another is strongly non-uniform point-plane configuration which represents the situation of a defect or a source of discharge. In quasi-uniform field study, standard breakdown tests were carried out under negative lightning and switching impulse voltages. Influence of various testing methods on the measured lightning breakdown voltage was studied and the 1% lightning withstand voltage was obtained based on Weibull distribution fitting on the cumulative probability plot built up using the approximately 1000 impulse shots. As for strongly non-uniform field study, streamer propagation and breakdown event in ester liquids either with or without pressboard interface were investigated at various gap distances under both positive and negative lightning impulse voltages. A relationship between the results under lightning impulse and previously published results under step voltage was built up to predict the lightning breakdown voltage of ester liquids at very large gaps. The results indicated that impulse strengths of ester liquids for both breakdown and withstand in a quasi-uniform field, are comparable to those of mineral oil. In a strongly non-uniform field, streamers in ester liquids propagate faster and further, than in mineral oil at the same voltage level. Thus breakdown voltages of ester liquids are generally lower than those of mineral oil, which could be as low as 40% at a large gap distance of approximately 1000 mm. Introduction of parallel pressboard interface has no influence on the streamer propagation and thus does not weaken the breakdown voltage, but it tends to reduce the acceleration voltage particularly for mineral oil under positive polarity. Last but not least, a unique phenomenon of secondary reverse streamer (SRS) was observed in ester liquids, which occurs subsequently and well after the extinction of the primary streamer (PS) propagation within a single shot of impulse voltage and has the reverse polarity to the PS. The formation mechanism of SRS is explained mainly due to the reverse electric field induced by the residual space charges left by the PS.EThOS - Electronic Theses Online ServiceI MaterialsNational GridScottish PowerTJH2b Analytical ServicesUK Power NetworksElectricity North WestGBUnited Kingdo
Ferroresonance simulation studies of transmission systems
The onset of a ferroresonance phenomenon in power systems is commonly caused by the reconfiguration of a circuit into the one consisting of capacitances in series and interacting with transformers. The reconfiguration can be due to switching operations of de-energisation or the occurrence of a fault. Sustained ferroresonance without immediate mitigation measures can cause the transformers to stay in a state of saturation leading to excessive flux migrating to transformer tanks via internal accessories. The symptom of such an event can be unwanted humming noises being generated but the real threatening implication is the possible overheating which can result in premature ageing and failures.The main objective of this thesis is to determine the accurate models for transformers, transmission lines, circuit breakers and cables under transient studies, particularly for ferroresonance. The modeling accuracy is validated on a particular 400/275 kV transmission system by comparing the field test recorded voltage and current waveforms with the simulation results obtained using the models. In addition, a second case study involving another 400/275 kV transmission system with two transformers is performed to investigate the likelihood of the occurrence of sustained fundamental frequency ferroresonance mode and a possible quenching mechanism using the 13 kV tertiary connected reactor. A sensitivity study on transmission line lengths was also carriedout to determine the probability function of occurrence of various ferroresonance modes. To reproduce the sustained fundamental and the subharmonic ferroresonance modes, the simulation studies revealed that three main power system components which are involved in ferroresonance, i.e. the circuit breaker, the transmission line and the transformer, can be modeled using time-controlled switch, the PI, Bergeron or Marti line model, and the BCTRAN+ or HYBRID transformer model. Any combination of the above component models can be employed to accurately simulate the ferroresonance system circuit. Simulation studies also revealed that the key circuit parameter to initiate transformer ferroresonance in a transmission system is the circuit-to-circuit capacitance of a double-circuit overhead line. The extensive simulation studies also suggested that the ferroresonance phenomena are far more complex and sensitive to the minor changes of system parameters and circuit breaker operations. Adding with the non-linearity of transformer core characteristics, repeatability is not always guaranteed for simulation and experimental studies. All simulation studies are carried out using an electromagnetic transient program, called ATPDraw.EThOS - Electronic Theses Online ServiceBrunei GovernmentGBUnited Kingdo
Studies on the Property and Application of Starch Sugar Ester Dodecenylsuccinic
In this study, we have prepared starch and Brown algae sugar ester dodecenylsuccinic, and by using infrared rays, scanning electron microscopy (SEM), and differential scanning calorimetry (DSC), we studied the structures and properties of the starch and Brown algae sugar ester dodecenylsuccinic. In addition, we studied the possibility of using this modified starch and Brown algae as emulsifier that can be used in ice cream
- …