172,264 research outputs found
The surface and inner temperatures of magnetars
Assuming that the timescale of the magnetic field decay is approximately
equal to that of the stellar cooling via neutrino emission, we obtain a
one-to-one relationship between the effective surface thermal temperature and
the inner temperature. The ratio of the effective neutrino luminosity to the
effective X-ray luminosity decreases with decaying magnetic field.Comment: 3 Pages, 3 Figures, Published in IAU Symposium, 2013, V.291
p.386-388. 2013IAU Symposiu
Identification of nonlinear lateral flow immunoassay state-space models via particle filter approach
This is the post-print of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, the particle filtering approach is used, together with the kernel smoothing method, to identify the state-space model for the lateral flow immunoassay through available but short time-series measurement. The lateral flow immunoassay model is viewed as a nonlinear dynamic stochastic model consisting of the equations for the biochemical reaction system as well as the measurement output. The renowned extended Kalman filter is chosen as the importance density of the particle filter for the purpose of modeling the nonlinear lateral flow immunoassay. By using the developed particle filter, both the states and parameters of the nonlinear state-space model can be identified simultaneously. The identified model is of fundamental significance for the development of lateral flow immunoassay quantification. It is shown that the proposed particle filtering approach works well for modeling the lateral flow immunoassay.This work was supported in part by the International Science and Technology
Cooperation Project of China under Grant 2009DFA32050, Natural Science Foundation of China under Grants 61104041, International Science and Technology Cooperation Project of Fujian Province of China under Grant
2009I0016
Inference of nonlinear state-space models for sandwich-type lateral flow immunoassay using extended Kalman filtering
Copyright [2011] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected].
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, a mathematical model for sandwichtype lateral flow immunoassay is developed via short available time series. A nonlinear dynamic stochastic model is considered that consists of the biochemical reaction system equations and the observation equation. After specifying the model structure, we apply the extend Kalman filter (EKF) algorithm for identifying both the states and parameters of the nonlinear state-space model. It is shown that the EKF algorithm can accurately identify the parameters and also predict the system states in the nonlinear dynamic stochastic model through an iterative procedure by using a small number of observations. The identified mathematical model provides a powerful tool for testing the system hypotheses and also inspecting the effects from various design parameters in a both rapid and inexpensive way. Furthermore, by means of the established model, the dynamic changes of the concentration of antigens and antibodies can be predicted, thereby making it possible for us to analyze, optimize and design the properties of lateral flow immunoassay devices.This work was supported in part by the International Science and Technology
Cooperation Project of China under Grant 2009DFA32050, Natural Science Foundation of Fujian Province of China under Grants 2009J01280 and 2009J01281
A hybrid EKF and switching PSO algorithm for joint state and parameter estimation of lateral flow immunoassay models
This is the post-print version of the Article. The official published can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, a hybrid extended Kalman filter (EKF) and switching particle swarm optimization (SPSO) algorithm is proposed for jointly estimating both the parameters and states of the lateral flow immunoassay model through available short time-series measurement. Our proposed method generalizes the well-known EKF algorithm by imposing physical constraints on the system states. Note that the state constraints are encountered very often in practice that give rise to considerable difficulties in system analysis and design. The main purpose of this paper is to handle the dynamic modeling problem with state constraints by combining the extended Kalman filtering and constrained optimization algorithms via the maximization probability method. More specifically, a recently developed SPSO algorithm is used to cope with the constrained optimization problem by converting it into an unconstrained optimization one through adding a penalty term to the objective function. The proposed algorithm is then employed to simultaneously identify the parameters and states of a lateral flow immunoassay model. It is shown that the proposed algorithm gives much improved performance over the traditional EKF method.This work was supported in part by the International Science and Technology Cooperation Project of China under Grant
2009DFA32050, Natural Science Foundation of China under Grants 61104041, International Science and Technology Cooperation Project of Fujian Province of China under Grant
2009I0016
- …
