347,549 research outputs found
DISCHARGE OXIDE STORAGE CAPACITY AND VOLTAGE LOSS IN LI-AIR BATTERY
Air cathodes, where oxygen reacts with Li ions and electrons with discharge oxide stored in their pore structure, are often considered as the most challenging component in nonaqueous Lithium-air batteries. In non-aqueous electrolytes, discharge oxides are usually insoluble and hence precipitate at local reaction site, raising the oxygen transport resistance in the pore network. Due to their low electric conductivity, their presence causes electrode passivation. This study aims to investigate the air cathode's performance through analytically obtaining oxygen profiles, modeling electrode passivation, evaluating the transport polarization raised by discharge oxide precipitate, and developing analytical formulas for insoluble Li oxides storage capacity. The variations of cathode quantities, including oxygen content and temperature, are evaluated and related to a single dimensionless parameter - the Damköhler Number (Da). An approximate model is developed to predict discharge voltage loss, along with validation against two sets of experimental data. Air cathode properties, including tortuosity, surface coverage factor and the Da number, and their effects on the cathode's capacity of storing Li oxides are formulated and discussed
MHD Waves and Coronal Seismology: an overview of recent results
Recent observations have revealed that MHD waves and oscillations are
ubiquitous in the solar atmosphere, with a wide range of periods. We give a
brief review of some aspects of MHD waves and coronal seismology which have
recently been the focus of intense debate or are newly emerging. In particular,
we focus on four topics: (i) the current controversy surrounding propagating
intensity perturbations along coronal loops, (ii) the interpretation of
propagating transverse loop oscillations, (iii) the ongoing search for coronal
(torsional) Alfven waves and (iv) the rapidly developing topic of
quasi-periodic pulsations (QPP) in solar flares
Role of Interlayer Coupling on the Evolution of Band Edges in Few-Layer Phosphorene
Using first-principles calculations, we have investigated the evolution of
band-edges in few-layer phosphorene as a function of the number of P layers.
Our results predict that monolayer phosphorene is an indirect band gap
semiconductor and its valence band edge is extremely sensitive to strain. Its
band gap could undergo an indirect-to-direct transition under a lattice
expansion as small as 1% along zigzag direction. A semi-empirical interlayer
coupling model is proposed, which can well reproduce the evolution of valence
band-edges obtained by first-principles calculations. We conclude that the
interlayer coupling plays a dominated role in the evolution of the band-edges
via decreasing both band gap and carrier effective masses with the increase of
phosphorene thickness. A scrutiny of the orbital-decomposed band structure
provides a better understanding of the upward shift of valence band maximum
surpassing that of conduction band minimum.Comment: 25 pages, 9 figure
Recommended from our members
Fabrication of a high sensitive Ag-nanoparticle substrate and its application to the detection of toxic substances
Surface Enhanced Raman Scattering (SERS) is typically observed with the substrate in a liquid medium and it has been proposed as a promising technique for detecting low levels of pollutants in liquids. A technique is presented for self-assembly to immobilize Ag nanoparticles (Ag-NPs), with diameters ranging from 100 to 800nm on a solid support. Experimental results have been obtained through experiments using Ag-NPs active substrates to detect Rhodamine 6G (R6G) and crystal violet in the deionized water. Further, the SERS spectrum and Raman spectrum of phoxim were also measured, showing the enhancement in the performance of the active substrate as a result
The Magnetic Rayleigh-Taylor Instability in Three Dimensions
We study the magnetic Rayleigh-Taylor instability in three dimensions, with
focus on the nonlinear structure and evolution that results from different
initial field configurations. We study strong fields in the sense that the
critical wavelength l_c at which perturbations along the field are stable is a
large fraction of the size of the computational domain. We consider magnetic
fields which are initially parallel to the interface, but have a variety of
configurations, including uniform everywhere, uniform in the light fluid only,
and fields which change direction at the interface. Strong magnetic fields do
not suppress instability, in fact by inhibiting secondary shear instabilities,
they reduce mixing between the heavy and light fluid, and cause the rate of
growth of bubbles and fingers to increase in comparison to hydrodynamics.
Fields parallel to, but whose direction changes at, the interface produce long,
isolated fingers separated by the critical wavelength l_c, which may be
relevant to the morphology of the optical filaments in the Crab nebula.Comment: 14 pages, 9 pages, accepted by Ap
Subnanosecond magnetization reversal of magnetic nanoparticle driven by chirp microwave field pulse
We investigate the magnetization reversal of single-domain magnetic
nanoparticle driven by linear down-chirp microwave magnetic field pulse.
Numerical simulations based on the Landau-Lifshitz-Gilbert equation reveal that
solely down-chirp pulse is capable of inducing subnanosecond magnetization
reversal. With a certain range of initial frequency and chirp rate, the
required field amplitude is much smaller than that of constant-frequency
microwave field. The fast reversal is because the down-chirp microwave field
acts as an energy source and sink for the magnetic particle before and after
crossing over the energy barrier, respectively. Applying a spin-polarized
current additively to the system further reduces the microwave field amplitude.
Our findings provide a new way to realize low-cost and fast magnetization
reversal
Knowledge discovery from mining the association between H5N1 outbreaks and environmental factors
The global spread of highly pathogenic avian influenza H5N1 in poultry, wild birds and humans, poses a significant panzootic threat and a serious public health risk. An efficient surveillance and disease control system requires a deep understanding of their spread mechanisms, including environmental factors responsible for the outbreak of the disease. Previous studies suggested that H5N1 viruses occurred under specific environmental circumstances in Asia and Africa. These studies were mainly derived from poultry outbreaks. In Europe, a large number of wild bird outbreaks were reported in west Europe with few or no poultry infections nearby. This distinct outbreak pattern in relation to environmental characteristics, however, has not yet been explored. This research demonstrated the use of logistic regression analyses to examine quantitative associations between anthropogenic and physical environmental factors, and the wild bird H5N1outbreaks in Europe. A geographic information system is used to visualize and analyze the data. Our results indicate that the H5N1 outbreaks occur in wild birds in Europe under predictable environmental conditions, which are highly correlated with increased NDVI in December, decreased aspect and slope, increased minimum temperature in October and decreased precipitation in January. It suggests that H5N1 outbreaks in wild birds are strongly influenced by food resource availability and facilitated by the increased temperature and the decreased precipitation. We therefore deduce that the H5N1 outbreaks in wild birds in Europe may be mainly caused by contact with wild birds. These findings are of great importance for global surveillance of H5N1 outbreaks in wild birds
Optical study of phase transitions in single-crystalline RuP
RuP single crystals of MnP-type orthorhombic structure were synthesized by
the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal
that the compound experiences two structural phase transitions, which are
further confirmed by enormous anomalies shown in temperature-dependent
resistivity and magnetic susceptibility. Particularly, the resistivity drops
monotonically upon temperature cooling below the second transition, indicating
that the material shows metallic behavior, in sharp contrast with the
insulating ground state of polycrystalline samples. Optical conductivity
measurements were also performed in order to unravel the mechanism of these two
transitions. The measurement revealed a sudden reconstruction of band structure
over a broad energy scale and a significant removal of conducting carriers
below the first phase transition, while a charge-density-wave-like energy gap
opens below the second phase transition.Comment: 5 pages, 6 figure
- …
