116 research outputs found
Pricing vulnerable options in a hybrid credit risk model driven by Heston-Nandi GARCH processes
This paper proposes a hybrid credit risk model, in closed form, to price
vulnerable options with stochastic volatility. The distinctive features of the
model are threefold. First, both the underlying and the option issuer's assets
follow the Heston-Nandi GARCH model with their conditional variance being
readily estimated and implemented solely on the basis of the observable prices
in the market. Second, the model incorporates both idiosyncratic and systematic
risks into the asset dynamics of the underlying and the option issuer, as well
as the intensity process. Finally, the explicit pricing formula of vulnerable
options enables us to undertake the comparative statistics analysis.Comment: 30 pages, 6 figure
Reduced expression of miR-22 in gastric cancer is related to clinicopathologic characteristics or patient prognosis
OBJECTIVE: Involvements of microRNA-22 (miR-22) in cancer development have attracted much attention, but its role in tumorigenesis of gastric cancer is still largely unknown. Therefore, the aim of this study was to investigate the expression patterns and clinical implications of miR-22 in gastric cancer. METHODS: Quantitative RT-PCR was performed to evaluate the expression levels of miR-22 in 98 pairs of gastric cancer and normal adjacent mucosa. RESULTS: Compared with normal adjacent mucosa, miR-22 expression was significantly downregulated in gastric cancer tissues (P < 0.001). Of 98 patients with gastric cancer, 58 (59.2%) were placed in the low miR-22 expression group and 40 (40.8%) were placed in the high miR-22 expression group. In addition, tumors with low miR-22 expression had greater extent of lymph node metastasis (P = 0.02) and distant metastasis (P = 0.01), and were at a worse stage (P = 0.01) than the tumors with high miR-22 expression. Moreover, the gastric cancer patients with low miR-22 expression had shorter overall survival than those with high miR-22 expression (P = 0.03). MiR-22, determined by multivariate analysis, was an independent prognostic factor for patients with gastric cancer. CONCLUSION: Our data offer the convincing evidence that the reduced expression of miR-22 was significantly associated with malignant development of gastric cancer and may be a novel prognostic marker of this disease. miR-22 might have potentials in the application of cancer therapy for patients with gastric cancer
Recommended from our members
A flexible organic reflectance oximeter array.
Transmission-mode pulse oximetry, the optical method for determining oxygen saturation in blood, is limited to only tissues that can be transilluminated, such as the earlobes and the fingers. The existing sensor configuration provides only single-point measurements, lacking 2D oxygenation mapping capability. Here, we demonstrate a flexible and printed sensor array composed of organic light-emitting diodes and organic photodiodes, which senses reflected light from tissue to determine the oxygen saturation. We use the reflectance oximeter array beyond the conventional sensing locations. The sensor is implemented to measure oxygen saturation on the forehead with 1.1% mean error and to create 2D oxygenation maps of adult forearms under pressure-cuff-induced ischemia. In addition, we present mathematical models to determine oxygenation in the presence and absence of a pulsatile arterial blood signal. The mechanical flexibility, 2D oxygenation mapping capability, and the ability to place the sensor in various locations make the reflectance oximeter array promising for medical sensing applications such as monitoring of real-time chronic medical conditions as well as postsurgery recovery management of tissues, organs, and wounds
Dynamic Recrystallization Behavior of TA15 Titanium Alloy under Isothermal Compression during Hot Deformation
In order to improve the understanding of the dynamic recrystallization (DRX) behaviors of TA15 titanium alloy (Ti-6Al-2Zr-1Mo-1V), a series of experiments were conducted on a TMTS thermal simulator at temperatures of 1173 K, 1203 K, 1223 K, and 1273 K with the strain rates of 0.005 s−1, 0.05 s−1, 0.5 s−1, and 1 s−1. By the regression analysis for conventional hyperbolic sine equation, the activation energy of DRX in α+β two-phase region is QS=588.7 Kg/mol and in β region is QD=225.8 Kg/mol, and a dimensionless parameter controlling the stored energy was determined as Z/A=ε˙exp(588.7×103)/RT/6.69×1026 in α+β two-phase region and as Z/A=ε˙exp(225.8×103)/RT/5.13×1011 in β region. The DRX behaviors of TA15 titanium alloy were proposed on the strength of the experiment results. Finally, the theoretical prediction results of DRX volume fraction were shown to be in agreement with experimental observations
Genome-wide identification and characterization of the NPF genes provide new insight into low nitrogen tolerance in Setaria
IntroductionNitrogen (N) is essential for plant growth and yield production and can be taken up from soil in the form of nitrate or peptides. The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) genes play important roles in the uptake and transportation of these two forms of N.MethodsBioinformatic analysis was used to identify and characterize the NPF genes in Setaria. RNA-seq was employed to analyze time-series low nitrate stress response of the SiNPF genes. Yeast and Arabidopsis mutant complementation were used to test the nitrate transport ability of SiNRT1.1B1 and SiNRT1.1B2.ResultsWe identified 92 and 88 putative NPF genes from foxtail millet (Setaria italica L.) and its wild ancestor green foxtail (Setaria viridis L.), respectively. These NPF genes were divided into eight groups according to their sequence characteristics and phylogenetic relationship, with similar intron-exon structure and motifs in the same subfamily. Twenty-six tandem duplication and 13 segmental duplication events promoted the expansion of SiNPF gene family. Interestingly, we found that the tandem duplication of the SiNRT1.1B gene might contribute to low nitrogen tolerance of foxtail millet. The gene expression atlas showed that the SiNPFs were divided into two major clusters, which were mainly expressed in root and the above ground tissues, respectively. Time series transcriptomic analysis further revealed the response of these SiNPF genes to short- and long- time low nitrate stress. To provide natural variation of gene information, we carried out a haplotype analysis of these SiNPFs and identified 2,924 SNPs and 400 InDels based on the re-sequence data of 398 foxtail millet accessions. We also predicted the three-dimensional structure of the 92 SiNPFs and found that the conserved proline 492 residues were not in the substrate binding pocket. The interactions of SiNPF proteins with NO3− were analyzed using molecular docking and the pockets were then identified. We found that the SiNPFs- NO3− binding energy ranged from -3.8 to -2.7 kcal/mol.DiscussionTaken together, our study provides a comprehensive understanding of the NPF gene family in Setaria and will contribute to function dissection of these genes for crop breeding aimed at improving high nitrogen use efficiency
A Larger Root System Is Coupled With Contrasting Expression Patterns of Phosphate and Nitrate Transporters in Foxtail Millet [Setaria italica (L.) Beauv.] Under Phosphate Limitation
Foxtail millet [Setaria italica (L.) Beauv.], a widely cultivated food and fodder crop, develops a smaller root system while enlarges the root diameter facilitating nutrient transport under nitrogen limitation. How foxtail millet responds to phosphate limitation (LP) remains unaddressed. LP seedlings of the sequenced variety Yugu1 had significantly lower P concentrations in both shoots and roots and displayed higher levels of anthocyanin accumulation in leaves, indicating that the seedlings suffered from P limitation under hydroponic culture. One obvious and adaptive phenotype of LP plants was the larger root system mostly as the result of stimulation of lateral root proliferation in terms of the number, density, and length. Preferential biomass accumulation in the root under LP ensured carbon provision for root expansion and resulted in significant increases in the total and specific root length, which substantially extended the absorptive surface of P in the growth medium. Elevation of auxin and gibberellin concentrations might serve as an internal boost underpinning root architectural re-patterning under LP. Not just morphological adaptation, up-regulation of expression of SiPHT1;1 and SiPHT1;4 in roots and that of SiPHT1;2 in roots and shoots preconditioned adaptive enhancement of P uptake and translocation under LP. Interestingly, internal nitrogen surpluses occurred as indicated by dramatic increases in free amino acids in LP shoots and roots and higher concentrations of nitrogen in roots. Such nitrogen surplus ‘signals’ tended to switch down expression of nitrate transporters SiNRT2.1 and SiNAR2.1 in the root and that of SiNRT1.11 and SiNRT1.12 in the shoot to reduce nitrate mobilization toward or within the shoot. Together, our work provided new insights into adaption of a critical cereal crop to LP and its innate connection with nitrogen nutrition
TAT-Ngn2 Enhances Cognitive Function Recovery and Regulates Caspase-Dependent and Mitochondrial Apoptotic Pathways After Experimental Stroke
Neurogenin-2 (Ngn2) is a basic helix-loop-helix (bHLH) transcription factor that contributes to the identification and specification of neuronal fate during neurogenesis. In our previous study, we found that Ngn2 plays an important role in alleviating neuronal apoptosis, which may be viewed as an attractive candidate target for the treatment of cerebral ischemia. However, novel strategies require an understanding of the function and mechanism of Ngn2 in mature hippocampal neurons after global cerebral ischemic injury. Here, we found that the expression of Ngn2 decreased in the hippocampus after global cerebral ischemic injury in mice and in primary hippocampal neurons after oxygen glucose deprivation (OGD) injury. Then, transactivator of transcription (TAT)-Ngn2, which was constructed by fusing a TAT domain to Ngn2, was effectively transported and incorporated into hippocampal neurons after intraperitoneal (i.p.) injection and enhanced cognitive functional recovery in the acute stage after reperfusion. Furthermore, TAT-Ngn2 alleviated hippocampal neuronal damage and apoptosis, and inhibited the cytochrome C (CytC) leak from the mitochondria to the cytoplasm through regulating the expression levels of brain-derived neurotrophic factor (BDNF), phosphorylation tropomyosin-related kinase B (pTrkB), Bcl-2, Bax and cleaved caspase-3 after reperfusion injury in vivo and in vitro. These findings suggest that the downregulation of Ngn2 expression may have an important role in triggering brain injury after ischemic stroke and that the neuroprotection of TAT-Ngn2 against stroke might involve the modulation of BDNF-TrkB signaling that regulates caspase-dependent and mitochondrial apoptotic pathways, which may be an attractive therapeutic strategy for cerebral ischemic injury
Seasonality of the transmissibility of hand, foot and mouth disease: a modelling study in Xiamen City, China.
This study attempts to figure out the seasonality of the transmissibility of hand, foot and mouth disease (HFMD). A mathematical model was established to calculate the transmissibility based on the reported data for HFMD in Xiamen City, China from 2014 to 2018. The transmissibility was measured by effective reproduction number (Reff) in order to evaluate the seasonal characteristics of HFMD. A total of 43 659 HFMD cases were reported in Xiamen, for the period 2014 to 2018. The median of annual incidence was 221.87 per 100 000 persons (range: 167.98/100,000-283.34/100 000). The reported data had a great fitting effect with the model (R2 = 0.9212, P < 0.0001), it has been shown that there are two epidemic peaks of HFMD in Xiamen every year. Both incidence and effective reproduction number had seasonal characteristics. The peak of incidence, 1-2 months later than the effective reproduction number, occurred in Summer and Autumn, that is, June and October each year. Both the incidence and transmissibility of HFMD have obvious seasonal characteristics, and two annual epidemic peaks as well. The peak of incidence is 1-2 months later than Reff
Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis
Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant hormonal regulation, as well as morphological phenotypes controlled by plant hormones. Based on data from mutant studies, transgenic analysis and gene ontology (GO) annotation, we have identified a total of 1026 genes in the Arabidopsis genome that participate in plant hormone functions. Meanwhile, a phenotype ontology is developed to precisely describe myriad hormone-regulated morphological processes with standardized vocabularies. A web interface (http://ahd.cbi.pku.edu.cn) would allow users to quickly get access to information about these hormone-related genes, including sequences, functional category, mutant information, phenotypic description, microarray data and linked publications. Several applications of this database in studying plant hormonal regulation and hormone cross-talk will be presented and discussed
Electroacupuncture pretreatment attenuates cerebral ischemic injury through α7 nicotinic acetylcholine receptor-mediated inhibition of high-mobility group box 1 release in rats
<p>Abstract</p> <p>Background</p> <p>We have previously reported that electroacupuncture (EA) pretreatment induced tolerance against cerebral ischemic injury, but the mechanisms underlying this effect of EA are unknown. In this study, we assessed the effect of EA pretreatment on the expression of α7 nicotinic acetylcholine receptors (α7nAChR), using the ischemia-reperfusion model of focal cerebral ischemia in rats. Further, we investigated the role of high mobility group box 1 (HMGB1) in neuroprotection mediated by the α7nAChR and EA.</p> <p>Methods</p> <p>Rats were treated with EA at the acupoint "Baihui (GV 20)" 24 h before focal cerebral ischemia which was induced for 120 min by middle cerebral artery occlusion. Neurobehavioral scores, infarction volumes, neuronal apoptosis, and HMGB1 levels were evaluated after reperfusion. The α7nAChR agonist PHA-543613 and the antagonist α-bungarotoxin (α-BGT) were used to investigate the role of the α7nAChR in mediating neuroprotective effects. The roles of the α7nAChR and HMGB1 release in neuroprotection were further tested in neuronal cultures exposed to oxygen and glucose deprivation (OGD).</p> <p>Results</p> <p>Our results showed that the expression of α7nAChR was significantly decreased after reperfusion. EA pretreatment prevented the reduction in neuronal expression of α7nAChR after reperfusion in the ischemic penumbra. Pretreatment with PHA-543613 afforded neuroprotective effects against ischemic damage. Moreover, EA pretreatment reduced infarct volume, improved neurological outcome, inhibited neuronal apoptosis and HMGB1 release following reperfusion, and the beneficial effects were attenuated by α-BGT. The HMGB1 levels in plasma and the penumbral brain tissue were correlated with the number of apoptotic neurons in the ischemic penumbra. Furthermore, OGD in cultured neurons triggered HMGB1 release into the culture medium, and this effect was efficiently suppressed by PHA-543,613. Pretreatment with α-BGT reversed the inhibitory effect of PHA-543,613 on HMGB1 release.</p> <p>Conclusion</p> <p>These data demonstrate that EA pretreatment strongly protects the brain against transient cerebral ischemic injury, and inhibits HMGB1 release through α7nAChR activation in rats. These findings suggest the novel potential for stroke interventions harnessing the anti-inflammatory effects of α7nAChR activation, through acupuncture or pharmacological strategies.</p
- …