489 research outputs found

    Strain accommodation through facet matching in La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4}/Nd1.85_\text{1.85}Ce0.15_\text{0.15}CuO4_\text{4} ramp-edge junctions

    Get PDF
    Scanning nano-focused X-ray diffraction (nXRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) are used to investigate the crystal structure of ramp-edge junctions between superconducting electron-doped Nd1.85_\text{1.85}Ce0.15_\text{0.15}CuO4_\text{4} and superconducting hole-doped La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4} thin films, the latter being the top layer. On the ramp, a new growth mode of La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4} with a 3.3 degree tilt of the c-axis is found. We explain the tilt by developing a strain accommodation model that relies on facet matching, dictated by the ramp angle, indicating that a coherent domain boundary is formed at the interface. The possible implications of this growth mode for the creation of artificial domains in morphotropic materials are discussed.Comment: 5 pages, 4 figures & 3 pages supplemental information with 2 figures. Copyright (2015) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in APL Mat. 3, 086101 (2015) and may be found at http://dx.doi.org/10.1063/1.492779

    Effect of high oxygen pressure annealing on superconducting Nd1.85Ce0.15CuO4 thin films by pulsed laser deposition from Cu-enriched targets

    Get PDF
    We show that the quality of Nd1.85Ce0.15CuO4 films grown by pulsed laser deposition can be enhanced by using a non-stoichiometric target with extra copper added to suppress the formation of a parasitic (Nd, Ce)2O3 phase. The properties of these films are less dependent on the exact annealing procedure after deposition as compared to films grown from a stoichiometric target. Film growth can be followed by a 1 bar oxygen annealing, after an initial vacuum annealing, while retaining the superconducting properties and quality. This enables the integration of electron-doped cuprates with their hole-doped counterparts on a single chip, to create, for example, superconducting pn-junctions.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Superconductor Science and Technology. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0953-2048/27/4/04401

    Manipulating electronic states at oxide interfaces using focused micro X-rays from standard lab-sources

    Get PDF
    Recently, x-ray illumination, using synchrotron radiation, has been used to manipulate defects, stimulate self-organization and to probe their structure. Here we explore a method of defect-engineering low-dimensional systems using focused laboratory-scale X-ray sources. We demonstrate an irreversible change in the conducting properties of the 2-dimensional electron gas at the interface between the complex oxide materials LaAlO3 and SrTiO3 by X-ray irradiation. The electrical resistance is monitored during exposure as the irradiated regions are driven into a high resistance state. Our results suggest attention shall be paid on electronic structure modification in X-ray spectroscopic studies and highlight large-area defect manipulation and direct device patterning as possible new fields of application for focused laboratory X-ray sources.Comment: 12 pages, 4 figure

    Phase diagram of superconducting vortex ratchet motion in a superlattice with noncentrosymmetry

    Full text link
    Ratchet motion of superconducting vortices, which is a directional flow of vortices in superconductors, is highly useful for exploring quantum phenomena and developing superconducting devices, such as superconducting diode and microwave antenna. However, because of the challenges in the quantitative characterization of the dynamic motion of vortices, a phase diagram of the vortex ratchet motion is still missing, especially in the superconductors with low dimensional structures. Here we establish a quantitative phase diagram of the vortex ratchet motion in a highly anisotropic superlattice superconductor, (SnS)1.17NbS2, using nonreciprocal magnetotransport. The (SnS)1.17NbS2, which possesses a layered atomic structure and noncentrosymmetry, exhibits nonreciprocal magnetotransport in a magnetic field perpendicular and parallel to the plane, which is considered a manifest of ratchet motion of superconducting vortices. We demonstrated that the ratchet motion is responsive to current excitation, magnetic field and thermal perturbation. Furthermore, we extrapolated a giant nonreciprocal coefficient ({\gamma}), which quantitatively describes the magnitude of the vortex ratchet motion, and eventually established phase diagrams of the ratchet motion of the vortices with a quantitative description. Last, we propose that the ratchet motion originates from the coexistence of pancake vortices (PVs) and Josephson vortices (JVs). The phase diagrams are desirable for controlling the vortex motion in superlattice superconductors and developing next-generation energy-efficient superconducting devices

    Room temperature charge-to-spin conversion from q-2DEG at SrTiO3-based interfaces

    Full text link
    Interfacial two-dimensional electron gas (2DEG), especially the SrTiO3-based ones at the unexpected interface of insulators, have emerged to be a promising candidate for efficient charge-spin current interconversion. In this article, to gain insight into the mechanism of the charge-spin current interconversion at the oxide-based 2DEG, we focused on conducting interfaces between insulating SrTiO3 and two types of aluminium-based amorphous insulators, namely SrTiO3/AlN and SrTiO3/Al2O3, and estimated their charge-spin conversion efficiency, {\theta}_cs. The two types of amorphous insulators were selected to explicitly probe the overlooked contribution of oxygen vacancy to the {\theta}_cs. We proposed a mechanism to explain results of spin-torque ferromagnetic resonance (ST-FMR) measurements and developed an analysis protocol to reliably estimate the {\theta}_cs of the oxide based 2DEG. The resultant {\theta}_cs/t, where t is the thickness of the 2DEG, were estimated to be 0.244 nm-1 and 0.101 nm-1 for the SrTiO3/AlN and SrTiO3/Al2O3, respectively, and they are strikingly comparable to their crystalline counterparts. Furthermore, we also observe a large direct current modulation of resonance linewidth in SrTiO3/AlN samples, confirming its high {\theta}_cs and attesting an oxygen-vacancy-enabled charge-spin conversion. Our findings emphasize the defects' contribution to the charge-spin interconversion, especially in the oxide-based low dimensional systems, and provide a way to create and enhance charge-spin interconversion via defect engineering

    Giant third-order nonlinear Hall effect in misfit layer compound (SnS)1.17{1.17}(NbS2_2)3_3

    Full text link
    Nonlinear Hall effect (NLHE) holds immense significance in recognizing the band geometry and its potential applications in current rectification. Recent discoveries have expanded the study from second-order to third-order nonlinear Hall effect (THE), which is governed by an intrinsic band geometric quantity called the Berry Connection Polarizability (BCP) tensor. Here we demonstrate a giant THE in a misfit layer compound, (SnS)1.17{1.17}(NbS2_2)3_3. While the THE is prohibited in individual NbS2_2 and SnS due to the constraints imposed by the crystal symmetry and their band structures, a remarkable THE emerges when a superlattice is formed by introducing a monolayer of SnS. The angular-dependent THE and its scaling relationship indicate that the phenomenon could be correlated to the band geometry modulation, concurrently with the symmetry breaking. The resulting strength of THE is orders of magnitude higher compared to recent studies. Our work illuminates the modulation of structural and electronic geometries for novel quantum phenomena through interface engineering
    • …
    corecore