751 research outputs found
Utility of Adaptive Strategy and Adaptive Design for Biomarker-facilitated Patient Selection in Pharmacogenomic or Pharmacogenetic Clinical Development Program
In the early to late phases of conventional clinical trials, improvement of disease status at study baseline is the anchor of an effective treatment measured by therapeutic response. These population-based clinical trials do not formally account for disease-associated marker genotype or genome-associated therapeutic response. We discuss alternative study designs in pharmacogenomic or pharmacogenetic clinical trials for genomic or genetic biomarker development, and for formally assessing the clinical utility of genomic or genetic (composite) biomarkers. A two-stage adaptive strategy from completed, ongoing or prospectively planned pharmacogenomic or pharmacogenetic clinical trials is described for development of a genomic or genetic biomarker. We present two types of adaptive design: (1) the genomic biomarker is developed external to the clinical trial, which is designed for treatment effect inference; and (2) first-stage data are used to explore a genomic biomarker, but statistical inference of treatment effect in the genomically or genetically defined biomarker subset is only performed at the second stage of the same trial. When the null hypothesis of no treatment effect in all randomized patients and the genomic patient subset are prospectively specified, we compare the statistical power between fixed and adaptive designs. We also compare the two types of adaptive design. Results from simulation studies showed that adaptive design is more powerful than fixed design for those genomic or genetic biomarkers whose clinical utility is predictive of treatment effect. Pursuit of adaptive design gains at least 20% to more than 30% genomic patient subset power when the genomic biomarker status is readily usable at study initiation, in comparison to when it is explored using the first-stage data of the same clinical trial. In exploratory studies, adaptive strategy provides wide flexibility in the process of genomic or genetic biomarker development. In contrast, an adaptive design trial that employs limited flexibility, and is an adequate and well-controlled investigation, has a greater power gain than a fixed design trial, in which the genomic biomarker is capable of predicting treatment effects that pertain only to the prespecified genomic or genetic patient subset
BaySize: Bayesian Sample Size Planning for Phase I Dose-Finding Trials
We propose BaySize, a sample size calculator for phase I clinical trials
using Bayesian models. BaySize applies the concept of effect size in dose
finding, assuming the MTD is defined based on an equivalence interval.
Leveraging a decision framework that involves composite hypotheses, BaySize
utilizes two prior distributions, the fitting prior (for model fitting) and
sampling prior (for data generation), to conduct sample size calculation under
desirable statistical power. Look-up tables are generated to facilitate
practical applications. To our knowledge, BaySize is the first sample size tool
that can be applied to a broad range of phase I trial designs
The Reproducibility of Lists of Differentially Expressed Genes in Microarray Studies
Reproducibility is a fundamental requirement in scientific experiments and clinical contexts. Recent publications raise concerns about the reliability of microarray technology because of the apparent lack of agreement between lists of differentially expressed genes (DEGs). In this study we demonstrate that (1) such discordance may stem from ranking and selecting DEGs solely by statistical significance (P) derived from widely used simple t-tests; (2) when fold change (FC) is used as the ranking criterion, the lists become much more reproducible, especially when fewer genes are selected; and (3) the instability of short DEG lists based on P cutoffs is an expected mathematical consequence of the high variability of the t-values. We recommend the use of FC ranking plus a non-stringent P cutoff as a baseline practice in order to generate more reproducible DEG lists. The FC criterion enhances reproducibility while the P criterion balances sensitivity and specificity
Packaging Health Services When Resources Are Limited: The Example of a Cervical Cancer Screening Visit
BACKGROUND: Increasing evidence supporting the value of screening women for cervical cancer once in their lifetime, coupled with mounting interest in scaling up successful screening demonstration projects, present challenges to public health decision makers seeking to take full advantage of the single-visit opportunity to provide additional services. We present an analytic framework for packaging multiple interventions during a single point of contact, explicitly taking into account a budget and scarce human resources, constraints acknowledged as significant obstacles for provision of health services in poor countries. METHODS AND FINDINGS: We developed a binary integer programming (IP) model capable of identifying an optimal package of health services to be provided during a single visit for a particular target population. Inputs to the IP model are derived using state-transition models, which compute lifetime costs and health benefits associated with each intervention. In a simplified example of a single lifetime cervical cancer screening visit, we identified packages of interventions among six diseases that maximized disability-adjusted life years (DALYs) averted subject to budget and human resource constraints in four resource-poor regions. Data were obtained from regional reports and surveys from the World Health Organization, international databases, the published literature, and expert opinion. With only a budget constraint, interventions for depression and iron deficiency anemia were packaged with cervical cancer screening, while the more costly breast cancer and cardiovascular disease interventions were not. Including personnel constraints resulted in shifting of interventions included in the package, not only across diseases but also between low- and high-intensity intervention options within diseases. CONCLUSIONS: The results of our example suggest several key themes: Packaging other interventions during a one-time visit has the potential to increase health gains; the shortage of personnel represents a real-world constraint that can impact the optimal package of services; and the shortage of different types of personnel may influence the contents of the package of services. Our methods provide a general framework to enhance a decision maker's ability to simultaneously consider costs, benefits, and important nonmonetary constraints. We encourage analysts working on real-world problems to shift from considering costs and benefits of interventions for a single disease to exploring what synergies might be achievable by thinking across disease burdens
A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction
The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies
<p>Abstract</p> <p>Background</p> <p>Reproducibility is a fundamental requirement in scientific experiments. Some recent publications have claimed that microarrays are unreliable because lists of differentially expressed genes (DEGs) are not reproducible in similar experiments. Meanwhile, new statistical methods for identifying DEGs continue to appear in the scientific literature. The resultant variety of existing and emerging methods exacerbates confusion and continuing debate in the microarray community on the appropriate choice of methods for identifying reliable DEG lists.</p> <p>Results</p> <p>Using the data sets generated by the MicroArray Quality Control (MAQC) project, we investigated the impact on the reproducibility of DEG lists of a few widely used gene selection procedures. We present comprehensive results from inter-site comparisons using the same microarray platform, cross-platform comparisons using multiple microarray platforms, and comparisons between microarray results and those from TaqMan – the widely regarded "standard" gene expression platform. Our results demonstrate that (1) previously reported discordance between DEG lists could simply result from ranking and selecting DEGs solely by statistical significance (<it>P</it>) derived from widely used simple <it>t</it>-tests; (2) when fold change (FC) is used as the ranking criterion with a non-stringent <it>P</it>-value cutoff filtering, the DEG lists become much more reproducible, especially when fewer genes are selected as differentially expressed, as is the case in most microarray studies; and (3) the instability of short DEG lists solely based on <it>P</it>-value ranking is an expected mathematical consequence of the high variability of the <it>t</it>-values; the more stringent the <it>P</it>-value threshold, the less reproducible the DEG list is. These observations are also consistent with results from extensive simulation calculations.</p> <p>Conclusion</p> <p>We recommend the use of FC-ranking plus a non-stringent <it>P </it>cutoff as a straightforward and baseline practice in order to generate more reproducible DEG lists. Specifically, the <it>P</it>-value cutoff should not be stringent (too small) and FC should be as large as possible. Our results provide practical guidance to choose the appropriate FC and <it>P</it>-value cutoffs when selecting a given number of DEGs. The FC criterion enhances reproducibility, whereas the <it>P </it>criterion balances sensitivity and specificity.</p
Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels
Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≥6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets
- …