14 research outputs found

    The Role of Ruthenium in CO2 Capture and Catalytic Conversion to Fuel by Dual Function Materials (DFM)

    No full text
    Development of sustainable energy technologies and reduction of carbon dioxide in the atmosphere are the two effective strategies in dealing with current environmental issues. Herein we report a Dual Function Material (DFM) consisting of supported sodium carbonate in intimate contact with dispersed Ru as a promising catalytic solution for combining both approaches. The Ru-Na2CO3 DFM deposited on Al2O3 captures CO2 from a flue gas and catalytically converts it to synthetic natural gas (i.e., methane) using H2 generated from renewable sources. The Ru in the DFM, in combination with H2, catalytically hydrogenates both adsorbed CO2 and the bulk Na2CO3, forming methane. The depleted sites adsorb CO2 through a carbonate reformation process and in addition adsorb CO2 on its surface. This material functions well in O2- and H2O-containing flue gas where the favorable Ru redox property allows RuOx, formed during flue gas exposure, to be reduced during the hydrogenation cycle. As a combined CO2 capture and utilization scheme, this technology overcomes many of the limitations of the conventional liquid amine-based CO2 sorbent technology

    Estudio DRIFTS in situ de captura de CO2 en dos pasos y metanación catalítica sobre material de doble función Ru, “Na2O”/Al2O3

    No full text
    6 páginasDual Function Materials (DFM) are composed of an alkali or alkaline earth CO2 adsorbent phase and a supported catalyst. It selectively captures CO2 which is then methanated using renewable H2. Both the capture and me- thanation steps are conducted at about 320 °C so no temperature swings are required allowing for continuous operation using two parallel reactors operating in tandem. This process approaches carbon neutral power generation by recycling the CH4 produced for re-combustion. This two-step process was studied by in-situ DRIFTS at 320 °C over 5%Ru-6.1%“Na2O”/Al2O3 DFM and compared with the 5%Ru/Al2O3 traditional methanation catalyst. In the DFM the Na2CO3/Al2O3 pre-curser is reduced to “Na2O” catalyzed by Ru metal. For both Ru/ Al2O3 and DFM CO2 adsorbs on Ru active sites and Al2O3 OH groups during the capture step. For DFM large amounts of CO2 absorb on the Al-O−-Na+ species forming bidentate carbonates. During the H2 reduction step (i.e., methanation step), adsorbed bicarbonates and bidentate carbonates spill over onto the Ru-support inter- face, where methanation takes place through sequential hydrogenation with formates as reaction intermediaries. Although CO2 was mainly adsorbed on the alkaline support methanation occurs over Ru, supporting the hy- pothesis that the reaction occurs at the Ru-support interface. Therefore, the multiple adsorption sites over the DFM explain the high CO2 adsorption capacity by the formation of bidentate carbonates that spill over onto the Ru-support interface, during the two-step methanation process.Los materiales de doble función (DFM) están compuestos por una fase adsorbente de CO2 alcalino o alcalinotérreo y un soporte Catalizador. Captura selectivamente el CO2 que luego se metana utilizando H2 renovable. Tanto la captura como yo- Los pasos de thanation se llevan a cabo a aproximadamente 320 °C, por lo que no se requieren cambios de temperatura, lo que permite un funcionamiento continuo. operación usando dos reactores paralelos operando en tándem. Este proceso se acerca a la energía neutral en carbono. generación mediante el reciclaje del CH4 producido para la recombustión. Este proceso de dos pasos fue estudiado por DRIFTS in situ a 320 °C sobre 5%Ru-6.1%“Na2O”/Al2O3 DFM y comparado con la metanización tradicional 5%Ru/Al2O3 Catalizador. En el DFM, el precursor Na2CO3/Al2O3 se reduce a “Na2O” catalizado por Ru metal. Tanto para Ru/ Al2O3 y DFM CO2 se adsorben en sitios activos de Ru y grupos OH de Al2O3 durante el paso de captura. Para DFM grande cantidades de CO2 se absorben en las especies Al-O−-Na+ formando carbonatos bidentados. Durante el paso de reducción de H2 (es decir, etapa de metanización), los bicarbonatos adsorbidos y los carbonatos bidentados se derraman sobre el soporte intermedio de Ru. cara, donde la metanización se lleva a cabo mediante hidrogenación secuencial con formiatos como intermediarios de la reacción. Aunque el CO2 se adsorbió principalmente en el soporte alcalino, la metanización ocurre sobre Ru, apoyando el soporte hipótesis de que la reacción ocurre en la interfaz Ru-soporte. Por lo tanto, los múltiples sitios de adsorción sobre el DFM explica la alta capacidad de adsorción de CO2 por la formación de carbonatos bidentados que se derraman sobre el Interfaz Ru-support, durante el proceso de metanización de dos pasos

    Effect of reinforcement types on the ball milling behavior and mechanical properties of 2024Al matrix composites

    No full text
    In this paper, 2024 Al matrix composites reinforced by nanocrystalline high-entropy alloy particles (NC-HEAp), SiC particles, and coarse-grained high-entropy alloy particles (CG-HEAp) were fabricated via powder metallurgy, and a comparative study of different reinforcements was deeply conducted. The results showed that reinforcement types significantly influenced the morphology of composite powders, and the grain size and interfacial condition of composites. After ball milling, irregular granular NC-HEA-Al and SiC–Al composite powders were produced while the CG-HEA-Al composite powders exhibited flake shapes, and particle size of NC-HEAp sharply decreased and was significantly smaller than the other two reinforcements. The Cu-rich diffusion layer, a high dislocation density, and a thin oxide layer were formed in the interfaces of NC-HEA-Al, SiC–Al, and CG-HEA-Al composites, respectively. The NC-HEA-Al composite possessed the highest strength due to the best effect of grain refinement, while the SiC–Al composite displayed better ductility attributed to higher work hardening rate after the yield stage than that of the NC-HEA-Al composite. The CG-HEA-Al composites showed the least attractive mechanical properties, related to a poor interface bonding and pre-existing cracks in CG-HEAp. Furthermore, the differences in strengthening mechanisms of the three composites were also discussed. This work provides guidelines for designing metal matrix composites fabricated by powder metallurgy
    corecore