8,766 research outputs found
Renormalization group improved pQCD prediction for leptonic decay
The complete next-to-next-to-next-to-leading order short-distance and
bound-state QCD corrections to leptonic decay rate
has been finished by Beneke {\it et al.}
\cite{Beneke:2014qea}. Based on those improvements, we present a
renormalization group (RG) improved pQCD prediction for by applying the principle of maximum conformality (PMC). The PMC
is based on RG-invariance and is designed to solve the pQCD renormalization
scheme and scale ambiguities. After applying the PMC, all known-type of
-terms at all orders, which are controlled by the RG-equation, are
resummed to determine optimal renormalization scale for its strong running
coupling at each order. We then achieve a more convergent pQCD series, a
scheme- independent and more accurate pQCD prediction for
leptonic decay, i.e. keV, where the uncertainty is the squared average of
the mentioned pQCD errors. This RG-improved pQCD prediction agrees with the
experimental measurement within errors.Comment: 11 pages, 4 figures. Numerical results and discussions improved,
references updated, to be published in JHE
- β¦