61 research outputs found
Neutralization of Diverse Human Cytomegalovirus Strains Conferred by Antibodies Targeting Viral gH/gL/pUL128-131 Pentameric Complex
Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection, and developing a prophylactic vaccine is of high priority to public health. We recently reported a replication-defective human cytomegalovirus with restored pentameric complex glycoprotein H (gH)/gL/pUL128-131 for prevention of congenital HCMV infection. While the quantity of vaccine-induced antibody responses can be measured in a viral neutralization assay, assessing the quality of such responses, including the ability of vaccine-induced antibodies to cross-neutralize the field strains of HCMV, remains a challenge. In this study, with a panel of neutralizing antibodies from three healthy human donors with natural HCMV infection or a vaccinated animal, we mapped eight sites on the dominant virus-neutralizing antigen-the pentameric complex of glycoprotein H (gH), gL, and pUL128, pUL130, and pUL131. By evaluating the site-specific antibodies in vaccine immune sera, we demonstrated that vaccination elicited functional antiviral antibodies to multiple neutralizing sites in rhesus macaques, with quality attributes comparable to those of CMV hyperimmune globulin. Furthermore, these immune sera showed antiviral activities against a panel of genetically distinct HCMV clinical isolates. These results highlighted the importance of understanding the quality of vaccine-induced antibody responses, which includes not only the neutralizing potency in key cell types but also the ability to protect against the genetically diverse field strains. IMPORTANCE HCMV is the leading cause of congenital viral infection, and development of a preventive vaccine is a high public health priority. To understand the strain coverage of vaccine-induced immune responses in comparison with natural immunity, we used a panel of broadly neutralizing antibodies to identify the immunogenic sites of a dominant viral antigen-the pentameric complex. We further demonstrated that following vaccination of a replication-defective virus with the restored pentameric complex, rhesus macaques can develop broadly neutralizing antibodies targeting multiple immunogenic sites of the pentameric complex. Such analyses of site-specific antibody responses are imperative to our assessment of the quality of vaccine-induced immunity in clinical studies
Towards Layer-Selective Quantum Spin Hall Channels in Weak Topological Insulator Bi4Br2I2
Weak topological insulators, constructed by stacking quantum spin Hall
insulators with weak interlayer coupling, offer promising quantum electronic
applications through topologically nontrivial edge channels. However, the
currently available weak topological insulators are stacks of the same quantum
spin Hall layer with translational symmetry in the out-of-plane direction,
leading to the absence of the channel degree of freedom for edge states. Here,
we study a candidate weak topological insulator, Bi4Br2I2, which is alternately
stacked by three different quantum spin Hall insulators, each with tunable
topologically non-trivial edge states. Our angle-resolved photoemission
spectroscopy and first-principles calculations show that an energy gap opens at
the crossing points of different Dirac cones correlated with different layers
due to the interlayer interaction. This is essential to achieve the tunability
of topological edge states as controlled by varying the chemical potential. Our
work offers a perspective for the construction of tunable quantized conductance
devices for future spintronic applications
Vaccination With a Replication-Defective Cytomegalovirus Vaccine Elicits a Glycoprotein B-Specific Monoclonal Antibody Repertoire Distinct From Natural Infection
Human Cytomegalovirus (HCMV) is the leading infectious congenital infection globally and the most common viral infection in transplant recipients, therefore identifying a vaccine for HCMV is a top priority. Humoral immunity is a correlate of protection for HCMV infection. The most effective vaccine tested to date, which achieved 50% reduction in acquisition of HCMV, was comprised of the glycoprotein B protein given with an oil-in-water emulsion adjuvant MF59. We characterize gB-specific monoclonal antibodies isolated from individuals vaccinated with a disabled infectious single cycle (DISC) CMV vaccine, V160, and compare these to the gB-specific monoclonal antibody repertoire isolated from naturally-infected individuals. We find that vaccination with V160 resulted in gB-specific antibodies that bound homogenously to gB expressed on the surface of a cell in contrast to antibodies isolated from natural infection which variably bound to cell-associated gB. Vaccination resulted in a similar breadth of gB-specific antibodies, with binding profile to gB genotypes 1-5 comparable to that of natural infection. Few gB-specific neutralizing antibodies were isolated from V160 vaccinees and fewer antibodies had identifiable gB antigenic domain specificity compared to that of naturally-infected individuals. We also show that glycosylation of gB residue N73 may shield binding of gB-specific antibodies
Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation
The mixed caesium and formamidinium lead triiodide perovskite system (Cs1−xFAxPbI3) in the form of quantum dots (QDs) offers a pathway towards stable perovskite-based photovoltaics and optoelectronics. However, it remains challenging to synthesize such multinary QDs with desirable properties for high-performance QD solar cells (QDSCs). Here we report an effective oleic acid (OA) ligand-assisted cation-exchange strategy that allows controllable synthesis of Cs1−xFAxPbI3 QDs across the whole composition range (x = 0–1), which is inaccessible in large-grain polycrystalline thin films. In an OA-rich environment, the cross-exchange of cations is facilitated, enabling rapid formation of Cs1−xFAxPbI3 QDs with reduced defect density. The hero Cs0.5FA0.5PbI3 QDSC achieves a certified record power conversion efficiency (PCE) of 16.6% with negligible hysteresis. We further demonstrate that the QD devices exhibit substantially enhanced photostability compared with their thin-film counterparts because of suppressed phase segregation, and they retain 94% of the original PCE under continuous 1-sun illumination for 600 h
Characterization of Notch1 Antibodies That Inhibit Signaling of Both Normal and Mutated Notch1 Receptors
Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target.Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD), and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR). The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC(50) values as low as 5+/-3 nM and 0.13+/-0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR "class I" point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL). In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare "class II" or "class III" mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell-penetrating gamma-secretase inhibitors.Antibodies that compete with Notch1 ligand binding or that bind to the negative regulatory region can act as potent inhibitors of Notch1 signaling. These antibodies may have clinical utility for conditions in which inhibition of signaling by wild-type Notch1 is desired, but are likely to be of limited value for treatment of T-ALLs associated with aberrant Notch1 activation
Exploring the Roles of Heme Type and Histidine -Tyrosine Cross -Link in Heme-Copper Oxidases Using a Myoglobin Model
129 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2007.Novel oxygen reactivity is observed in our model protein (CuBMb) which reproduces the most essential components of HCO active site. In order to improve this artificial model to inhibit its side reaction with oxygen and channel it toward oxidase reactivity, more features were introduced into the CuBMb model in this study: (1) synthetic heme cofactors are used to replace the natural one of the protein, resulting in ∼20 fold inhibition of the side reaction; (2) a novel semi-synthetic system (Expressed Protein Ligation) is also established that may introduce new features such as the Tyr-His cross-linking structure in HCO to the model by direct incorporation of unnatural amino acid(s) into the protein sequence. These strategies demonstrate the power of combining the strength of biological, chemical and modern analytical techniques to create accurate biosynthesis models of protein active sites which can provide insight not easily achievable through other studies, thereby complementing the knowledge gained from both native protein and synthetic model studies.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD
Current development of asset securitization in China.
Condition of Assets Bases Securitization (ABS) to be developed in China. With ABS, stock asset is transferred to a special purpose vehicle (SPV) or a broking organization, then assets based security is released by the vehicle or organization to investors to obtain fund.Master of Business Administratio
Role of heme types in heme-copper oxidases: Effects of replacing a heme b with a heme o mimic in an engineered heme-copper center in myoglobin
To address the role of the secondary hydroxyl group of heme a/o in heme-copper oxidases, we incorporated Fe(III)-2,4 (4,2) hydroxyethyl vinyl deuterioporphyrin IX, as a heme o mimic, into the engineered heme-copper center in myoglobin (sperm whale myoglobin L29H/F43H, called CuBMb). The only difference between the heme b of myoglobin and the heme o mimic is the substitution of one of the vinyl side chains of the former with a hydroxyethyl group of the latter. This substitution resulted in an ∼4 nm blue shift in the Soret band and ∼20 mV decrease in the heme reduction potential. In a control experiment, the heme b in CuBMb was also replaced with a mesoheme, which resulted in an ∼13 nm blue shift and ∼30 mV decrease in the heme reduction potential. Kinetic studies of the heme o mimic-substituted CuBMb showed significantly different reactivity toward copper-dependent oxygen reduction from that of the b-type CuBMb. In reaction with O2, CuBMb with a native heme b showed heme oxygenase activity by generating verdoheme in the presence of Cu(I). This heme degradation reaction was slowed by ∼19-fold in the heme o mimic-substituted CuBMb (from 0.028 s-1 to 0.0015 s-1), while the mesoheme-substituted CuBMb shared a similar heme degradation rate with that of CuBMb (0.023 s-1). No correlation was found between the heme reduction potential and its O2 reactivity. These results strongly suggest the critical role of the hydroxyl group of heme o in modulating heme-copper oxidase activity through participation in an extra hydrogen-bonding network. © 2005 American Chemical Society
- …