255 research outputs found
Defining the genetic susceptibility to cervical neoplasia - a genome-wide association study
Funding: MAB was funded by a National Health and Medical Research Council (Australia) Senior Principal Research Fellowship. Support was also received from the Australian Cancer Research Foundation. JL holds a Tier 1 Canada Research Chair in Human Genome Epidemiology. The Seattle study was supported by the following grants: NIH, National Cancer Institute grants P01CA042792 and R01CA112512. Cervical Health Study (from which the NSW component was obtained) was funded by NHMRC Grant 387701, and CCNSW core grant. The Montreal study was funded by the Canadian Institutes of Health Research (grant MOP-42532) and sample processing was funded by the Reseau FRQS SIDA-MI. The Swedish Research Council, the Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg and Umeå, the Lundberg Foundation, the Torsten and Ragnar Soderberg’s Foundation, the Novo Nordisk Foundation, and the European Commission grant HEALTH-F2-2008-201865-GEFOS, BBMRI.se, the Swedish Society of Medicine, the KempeFoundation (JCK-1021), the Medical Faculty of Umeå University, the County Council of Vasterbotten (Spjutspetsanslag VLL:159:33-2007). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscriptPeer reviewedPublisher PDFPublisher PD
An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers
Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H₂. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH₄ to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H₂ oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface
Recommended from our members
Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility.
To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry
Recommended from our members
Association of Genetic Variants With Primary Open-Angle Glaucoma Among Individuals With African Ancestry.
Importance:Primary open-angle glaucoma presents with increased prevalence and a higher degree of clinical severity in populations of African ancestry compared with European or Asian ancestry. Despite this, individuals of African ancestry remain understudied in genomic research for blinding disorders. Objectives:To perform a genome-wide association study (GWAS) of African ancestry populations and evaluate potential mechanisms of pathogenesis for loci associated with primary open-angle glaucoma. Design, Settings, and Participants:A 2-stage GWAS with a discovery data set of 2320 individuals with primary open-angle glaucoma and 2121 control individuals without primary open-angle glaucoma. The validation stage included an additional 6937 affected individuals and 14 917 unaffected individuals using multicenter clinic- and population-based participant recruitment approaches. Study participants were recruited from Ghana, Nigeria, South Africa, the United States, Tanzania, Britain, Cameroon, Saudi Arabia, Brazil, the Democratic Republic of the Congo, Morocco, Peru, and Mali from 2003 to 2018. Individuals with primary open-angle glaucoma had open iridocorneal angles and displayed glaucomatous optic neuropathy with visual field defects. Elevated intraocular pressure was not included in the case definition. Control individuals had no elevated intraocular pressure and no signs of glaucoma. Exposures:Genetic variants associated with primary open-angle glaucoma. Main Outcomes and Measures:Presence of primary open-angle glaucoma. Genome-wide significance was defined as P < 5 × 10-8 in the discovery stage and in the meta-analysis of combined discovery and validation data. Results:A total of 2320 individuals with primary open-angle glaucoma (mean [interquartile range] age, 64.6 [56-74] years; 1055 [45.5%] women) and 2121 individuals without primary open-angle glaucoma (mean [interquartile range] age, 63.4 [55-71] years; 1025 [48.3%] women) were included in the discovery GWAS. The GWAS discovery meta-analysis demonstrated association of variants at amyloid-β A4 precursor protein-binding family B member 2 (APBB2; chromosome 4, rs59892895T>C) with primary open-angle glaucoma (odds ratio [OR], 1.32 [95% CI, 1.20-1.46]; P = 2 × 10-8). The association was validated in an analysis of an additional 6937 affected individuals and 14 917 unaffected individuals (OR, 1.15 [95% CI, 1.09-1.21]; P < .001). Each copy of the rs59892895*C risk allele was associated with increased risk of primary open-angle glaucoma when all data were included in a meta-analysis (OR, 1.19 [95% CI, 1.14-1.25]; P = 4 × 10-13). The rs59892895*C risk allele was present at appreciable frequency only in African ancestry populations. In contrast, the rs59892895*C risk allele had a frequency of less than 0.1% in individuals of European or Asian ancestry. Conclusions and Relevance:In this genome-wide association study, variants at the APBB2 locus demonstrated differential association with primary open-angle glaucoma by ancestry. If validated in additional populations this finding may have implications for risk assessment and therapeutic strategies
Online coupling of reverse-phase and hydrophilic interaction liquid chromatography for protein and glycoprotein characterization
We have developed a novel system for coupling reverse-phase (RP) and hydrophilic interaction liquid chromatography (HILIC) online in a micro-flow scheme. In this approach, the inherent solvent incompatibility between RP and HILIC is overcome through the use of constant-pressure online solvent mixing, which allows our system to perform efficient separations of both hydrophilic and hydrophobic compounds for mass spectrometry-based proteomics applications. When analyzing the tryptic digests of bovine serum albumin, ribonuclease B, and horseradish peroxidase, we observed near-identical coverage of peptides and glycopeptides when using online RP-HILIC—with only a single sample injection event—as we did from two separate RP and HILIC analyses. The coupled system was also capable of concurrently characterizing the peptide and glycan portions of deglycosylated glycoproteins from one injection event, as confirmed, for example, through our detection of 23 novel glycans from turkey ovalbumin. Finally, we validated the applicability of using RP-HILIC for the analysis of highly complex biological samples (mouse chondrocyte lysate, deglycosylated human serum). The enhanced coverage and efficiency of online RP-HILIC makes it a viable technique for the comprehensive separation of components displaying dramatically different hydrophobicities, such as peptides, glycopeptides, and glycans
Ginsenoside-Rg1 mediates a hypoxia-independent upregulation of hypoxia-inducible factor-1α to promote angiogenesis
Hypoxia-inducible factor (HIF-1) is the key transcription regulator for multiple angiogenic factors and is an appealing target. Ginsenoside-Rg1, a nontoxic saponin isolated from the rhizome of Panax ginseng, exhibits potent proangiogenic activity and has the potential to be developed as a new angiotherapeutic agent. However, the mechanisms by which Rg1 promotes angiogenesis are not fully understood. Here, we show that Rg1 is an effective stimulator of HIF-1α under normal cellular oxygen conditions in human umbilical vein endothelial cells. HIF-1α steady-state mRNA was not affected by Rg1. Rather, HIF-1α protein synthesis was stimulated by Rg1. This effect was associated with constitutive activation of phosphatidylinositol 3-kinase (PI3K)/Akt and its effector p70 S6 kinase (p70S6K), but not extracellular-signal regulated kinase 1/2. We further revealed that HIF-1α induction triggered the expression of target genes, including vascular endothelial growth factor (VEGF). The use of small molecule inhibitors LY294002 or rapamycin to inhibit PI3K/Akt and p70S6K activities, respectively, resulted in diminished HIF-1α activation and subsequent VEGF expression. RNA interference-mediated knockdown of HIF-1α suppressed Rg1-induced VEGF synthesis and angiogenic tube formation, confirming that the effect was HIF-1α specific. Similarly, the angiogenic phenotype could be reversed by inhibition of PI3K/Akt and p70S6K. These results define a hypoxia-independent activation of HIF-1α, uncovering a novel mechanism for Rg1 that could play a major role in angiogenesis and vascular remodeling
A stress-induced source of phonon bursts and quasiparticle poisoning.
The performance of superconducting qubits is degraded by a poorly characterized set of energy sources breaking the Cooper pairs responsible for superconductivity, creating a condition often called quasiparticle poisoning. Both superconducting qubits and low threshold dark matter calorimeters have observed excess bursts of quasiparticles or phonons that decrease in rate with time. Here, we show that a silicon crystal glued to its holder exhibits a rate of low-energy phonon events that is more than two orders of magnitude larger than in a functionally identical crystal suspended from its holder in a low-stress state. The excess phonon event rate in the glued crystal decreases with time since cooldown, consistent with a source of phonon bursts which contributes to quasiparticle poisoning in quantum circuits and the low-energy events observed in cryogenic calorimeters. We argue that relaxation of thermally induced stress between the glue and crystal is the source of these events
A Stress Induced Source of Phonon Bursts and Quasiparticle Poisoning
The performance of superconducting qubits is degraded by a poorly
characterized set of energy sources breaking the Cooper pairs responsible for
superconductivity, creating a condition often called "quasiparticle poisoning."
Recently, a superconductor with one of the lowest average quasiparticle
densities ever measured exhibited quasiparticles primarily produced in bursts
which decreased in rate with time after cooldown. Similarly, several cryogenic
calorimeters used to search for dark matter have also observed an unknown
source of low-energy phonon bursts that decrease in rate with time after
cooldown. Here, we show that a silicon crystal glued to its holder exhibits a
rate of low-energy phonon events that is more than two orders of magnitude
larger than in a functionally identical crystal suspended from its holder in a
low-stress state. The excess phonon event rate in the glued crystal decreases
with time since cooldown, consistent with a source of phonon bursts which
contributes to quasiparticle poisoning in quantum circuits and the low-energy
events observed in cryogenic calorimeters. We argue that relaxation of
thermally induced stress between the glue and crystal is the source of these
events, and conclude that stress relaxation contributes to quasiparticle
poisoning in superconducting qubits and the athermal phonon background in a
broad class of rare-event searches.Comment: 13 pages, 6 figures. W. A. Page and R. K. Romani contributed equally
to this work. Correspondence should be addressed to R. K. Roman
Apolipoprotein M Gene (APOM) Polymorphism Modifies Metabolic and Disease Traits in Type 2 Diabetes
This study aimed at substantiating the associations of the apolipoproein M gene (APOM) with type 2 diabetes (T2D) as well as with metabolic traits in Hong Kong Chinese. In addition, APOM gene function was further characterized to elucidate its activity in cholesterol metabolism. Seventeen APOM SNPs documented in the NCBI database were genotyped. Five SNPs were confirmed in our study cohort of 1234 T2D and 606 control participants. Three of the five SNPs rs707921(C+1871A), rs707922(G+1837T) and rs805264(G+203A) were in linkage disequilibrium (LD). We chose rs707922 to tag this LD region for down stream association analyses and characterized the function of this SNP at molecular level. No association between APOM and T2D susceptibility was detected in our Hong Kong Chinese cohort. Interestingly, the C allele of rs805297 was significantly associated with T2D duration of longer than 10 years (OR = 1.245, p = 0.015). The rs707922 TT genotype was significantly associated with elevated plasma total- and LDL- cholesterol levels (p = 0.006 and p = 0.009, respectively) in T2D patients. Molecular analyses of rs707922 lead to the discoveries of a novel transcript APOM5 as well as the cryptic nature of exon 5 of the gene. Ectopic expression of APOM5 transcript confirmed rs707922 allele-dependent activity of the transcript in modifying cholesterol homeostasis in vitro. In conclusion, the results here did not support APOM as a T2D susceptibility gene in Hong Kong Chinese. However, in T2D patients, a subset of APOM SNPs was associated with disease duration and metabolic traits. Further molecular analysis proved the functional activity of rs707922 in APOM expression and in regulation of cellular cholesterol content
- …