3,151 research outputs found

    Spin-dependent hole quantum transport in Aharonov-Bohm ring structure: possible schemes for spin filter

    Full text link
    We study the Aharonov-Bohm (AB) effect in two-dimensional mesoscopic frame in hole systems. We show that differing from the AB effect in electron systems, due to the presence of both the heavy hole and the light hole, the conductances not only show the normal spin-unresolved AB oscillations, but also become spin-separated. Some schemes for spin filter based on the abundant interference characteristics are proposed.Comment: 4 pages, 5 figures. Phys. Lett. A, 2005, in pres

    Gravitational Collapse of Phantom Fluid in (2+1)-Dimensions

    Full text link
    This investigation is devoted to the solutions of Einstein's field equations for a circularly symmetric anisotropic fluid, with kinematic self-similarity of the first kind, in (2+1)(2+1)-dimensional spacetimes. In the case where the radial pressure vanishes, we show that there exists a solution of the equations that represents the gravitational collapse of an anisotropic fluid, and this collapse will eventually form a black hole, even when it is constituted by the phantom energy.Comment: 10 page

    Apparent Superluminal Behavior

    Get PDF
    The apparent superluminal propagation of electromagnetic signals seen in recent experiments is shown to be the result of simple and robust properties of relativistic field equations. Although the wave front of a signal passing through a classically forbidden region can never move faster than light, an attenuated replica of the signal is reproduced ``instantaneously'' on the other side of the barrier. The reconstructed signal, causally connected to the forerunner rather than the bulk of the input signal, appears to move through the barrier faster than light.Comment: 8 pages, no figure

    Critical Collapse of the Massless Scalar Field in Axisymmetry

    Get PDF
    We present results from a numerical study of critical gravitational collapse of axisymmetric distributions of massless scalar field energy. We find threshold behavior that can be described by the spherically symmetric critical solution with axisymmetric perturbations. However, we see indications of a growing, non-spherical mode about the spherically symmetric critical solution. The effect of this instability is that the small asymmetry present in what would otherwise be a spherically symmetric self-similar solution grows. This growth continues until a bifurcation occurs and two distinct regions form on the axis, each resembling the spherically symmetric self-similar solution. The existence of a non-spherical unstable mode is in conflict with previous perturbative results, and we therefore discuss whether such a mode exists in the continuum limit, or whether we are instead seeing a marginally stable mode that is rendered unstable by numerical approximation.Comment: 11 pages, 8 figure

    Editorial honoring the 2018 reviewers for JGR Space Physics

    Get PDF
    The Editors of the Journal of Geophysical Research Space Physics would like to honor and thank the 2018 manuscript reviewers for the journal. This is a large‐scale, community‐wide effort for which 1,358 scientists submitted 3,027 reviews in 2018. We understand that this is a volunteer task and we greatly appreciate your time and effort to fulfill this service role back to the research community

    Gravitational Collapse of Cylindrical Shells Made of Counter-Rotating Dust Particles

    Get PDF
    The general formulas of a non-rotating dynamic thin shell that connects two arbitrary cylindrical regions are given using Israel's method. As an application of them, the dynamics of a thin shell made of counter-rotating dust particles, which emits both gravitational waves and massless particles when it is expanding or collapsing, is studied. It is found that when the models represent a collapsing shell, in some cases the angular momentum of the dust particles is strong enough to halt the collapse, so that a spacetime singularity is prevented from forming, while in other cases it is not, and a line-like spacetime singularity is finally formed on the symmetry axis.Comment: To appear in Phys. Rev.

    Decay of charged scalar field around a black hole: quasinormal modes of R-N, R-N-AdS and dilaton black holes

    Full text link
    It is well known that the charged scalar perturbations of the Reissner-Nordstrom metric will decay slower at very late times than the neutral ones, thereby dominating in the late time signal. We show that at the stage of quasinormal ringing, on the contrary, the neutral perturbations will decay slower for RN, RNAdS and dilaton black holes. The QN frequencies of the nearly extreme RN black hole have the same imaginary parts (damping times) for charged and neutral perturbations. An explanation of this fact is not clear but, possibly, is connected with the Choptuik scaling.Comment: 10 pages, LaTeX, 4 figures, considerable changes made and wrong interpretation of computations correcte

    Polar foliations and isoparametric maps

    Full text link
    A singular Riemannian foliation FF on a complete Riemannian manifold MM is called a polar foliation if, for each regular point pp, there is an immersed submanifold Σ\Sigma, called section, that passes through pp and that meets all the leaves and always perpendicularly. A typical example of a polar foliation is the partition of MM into the orbits of a polar action, i.e., an isometric action with sections. In this work we prove that the leaves of FF coincide with the level sets of a smooth map H:MΣH: M\to \Sigma if MM is simply connected. In particular, we have that the orbits of a polar action on a simply connected space are level sets of an isoparametric map. This result extends previous results due to the author and Gorodski, Heintze, Liu and Olmos, Carter and West, and Terng.Comment: 9 pages; The final publication is available at springerlink.com http://www.springerlink.com/content/c72g4q5350g513n1

    Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes

    Full text link
    Due to its large surface area and strongly attractive potential, a bundle of carbon nanotubes is an ideal substrate material for gas storage. In addition, adsorption in nanotubes can be exploited in order to separate the components of a mixture. In this paper, we investigate the preferential adsorption of D_2 versus H_2(isotope selectivity) and of ortho versus para(spin selectivity) molecules confined in the one-dimensional grooves and interstitial channels of carbon nanotube bundles. We perform selectivity calculations in the low coverage regime, neglecting interactions between adsorbate molecules. We find substantial spin selectivity for a range of temperatures up to 100 K, and even greater isotope selectivity for an extended range of temperatures,up to 300 K. This isotope selectivity is consistent with recent experimental data, which exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure
    corecore