922 research outputs found
Intricacies of TGF-β signaling in Treg and Th17 cell biology
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks
Progress on Silicone Packaging Materials for Power LED
AbstractEncapsulation materials are very vital to the power light emitting diode packaging and become a hot topic for worldwide researchers because the devices packaging and assembly yield, and the devices reliability and lifespan are determined by the quality of packaging and assembly materials as well as their processing. In this paper, the functions requirements and properties of power LED packaging materials were introduced. In addition, the research progress on traditional LED packaging materials, especially high refractive index silicone encapsulants were discussed in detail. Meanwhile, the direction of further development of encapsulation materials was pointed out
Quantitative Proteomics of Chromochloris zofingiensis Reveals the Key Proteins Involved in Cell Growth and Bioactive Compound Biosynthesis
Glucose metabolism regulates cell growth and affects astaxanthin accumulation in the green algae Chromochloris zofingiensis. Hub gene functioning in this bioactive compound has been illustrated at the genome, transcriptome and metabolome level, but is rather limited from a proteome aspect. Microalgal cell produce an enhanced biomass (8-fold higher) but decreased lipid and astaxanthin content (~20% less) in the glucose condition compared to the control. Here, we investigate the proteomic response of C. zofingiensis grown with and without glucose using an LC-MS/MS-based Tandem Mass Tag (TMT) approach. The proteomic analysis demonstrated that glucose supplementation triggers the upregulation of 105 proteins and downregulation of 151 proteins. Thus, the carbon and energy flux might flow to cell growth, which increased the associated protein abundance, including DNA polymerase, translation initiation factor, 26S proteasome regulatory subunits, and the marker enzyme of the TCA cycle ribosomal protein. Moreover, the glucose supplement triggered the downregulation of proteins mainly involved in photosynthesis, chloroplasts, valine, leucine and isoleucine biosynthesis, 2-oxocarboxylic acid metabolism, and pantothenate and CoA biosynthesis pathways. This proteomic analysis is likely to provide new insights into algal growth and lipid or astaxanthin accumulation upon glucose supplementation, providing a foundation for further development of C. zofingiensis as oleaginous microalga for bioengineering applications
Influence of Laserâ Microtextured Surface Collar on Marginal Bone Loss and Periâ Implant Soft Tissue Response: A Systematic Review and Metaâ Analysis
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142176/1/jper0651-sup-0003.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142176/2/jper0651.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142176/3/jper0651-sup-0004.pd
A higher-order uniform accuracy scheme for nonlinear ψ-Volterra integral equations in two dimension with weakly singular kernel
In this paper, we proposed a higher-order uniform accuracy scheme for nonlinear -Volterra integral equations in two dimension with weakly singular kernel by using the modified block-by-block method. First, we constructed a high order uniform accuracy scheme method in this paper by dividing the entire domain into some small sub-domains and approximating the integration function with biquadratic interpolation in each sub-domain. Second, we rigorously proved that the convergence order of the higher order uniform accuracy scheme was with 0 < \sigma_{1}, \sigma_{2} < 1 by using the discrete Gronwall inequality. Finally, two numerical examples were used to illustrate experimental results with different values of to support the theoretical results
Generation of Monoclonal Antibodies against Highly Conserved Antigens
Background: Therapeutic antibody development is one of the fastest growing areas of the pharmaceutical industry. Generating high-quality monoclonal antibodies against a given therapeutic target is very crucial for the success of the drug development. However, due to immune tolerance, some proteins that are highly conserved between mice and humans are not very immunogenic in mice, making it difficult to generate antibodies using a conventional approach. Methodology/Principal Findings: In this report, the impaired immune tolerance of NZB/W mice was exploited to generate monoclonal antibodies against highly conserved or self-antigens. Using two highly conserved human antigens (MIF and HMGB1) and one mouse self-antigen (TNF-alpha) as examples, we demonstrate here that multiple clones of high affinity, highly specific antibodies with desired biological activities can be generated, using the NZB/W mouse as the immunization host and a T cell-specific tag fused to a recombinant antigen to stimulate the immune system. Conclusions/Significance: We developed an efficient and universal method for generating surrogate or therapeuti
A higher-order numerical scheme for system of two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy
We give a modified block-by-block method for the nonlinear fractional order Volterra integral equation system by using quadratic Lagrangian interpolation based on the classical block-by-block method. The core of the method is that we divide its domain into a series of subdomains, that is, block it, and use piecewise quadratic Lagrangian interpolation on each subdomain to approximate . Our proposed method has uniform accuracy and its convergence order is . We give a strict proof for the error analysis of the method, and give several numerical examples to verify the correctness of the theoretical analysis
- …