19,436 research outputs found

    Particle-Hole Symmetry Breaking and the 5/2 Fractional Quantum Hall Effect

    Get PDF
    We report on the study of the fractional quantum Hall effect at the filling factor 5/2 using exact diagonalization method with torus geometry. The particle-hole symmetry breaking effect is considered using an additional three-body interaction. Both Pfaffian and anti-Pfaffian states can be the ground state depending on the sign of the three-body interaction. The results of the low-energy spectrum, the wave function overlap, and the particle-hole parity evolution, have shown the clear evidence of a direct sharp transition (possibly first-order) from the Pfaffian to the anti-Pfaffian state at the Coulomb point. A quantum phase diagram is established, where one finds further transitions from the Pfaffian or anti-Pfaffian state to the nearby compressible phases induced by a change of the pseudopotential.Comment: 4 pages, 4 figure

    The Effects on SS, TT, and UU from Higher-Dimensional Fermion Representations

    Get PDF
    Inspired by a new class of walking technicolor models recently proposed using higher-dimensional technifermions, we consider the oblique corrections from heavy non-degenerate fermions with two classes of higher-dimensional representations of the electroweak gauge group itself. One is chiral SM-like, and the other is vector-like. In both cases, we obtain explicit expressions for SS, TT, UU in terms of the fermion masses. We find that to keep the TT parameter ultraviolet-finite there must be a stringent constraint on the mass non-degeneracy of a heavy fermion multiplet.Comment: 4 page

    Dynamical Computation on Coefficients of Electroweak Chiral Lagrangian from One-doublet and Topcolor-assisted Technicolor Models

    Full text link
    Based on previous studies deriving the chiral Lagrangian for pseudo scalar mesons from the first principle of QCD, we derive the electroweak chiral Lagrangian and build up a formulation for computing its coefficients from one-doublet technicolor model and a schematic topcolor-assisted technicolor model. We find that the coefficients of the electroweak chiral Lagrangian for the topcolor-assisted technicolor model are divided into three parts: direct TC2 interaction part, TC1 and TC2 induced effective Z' particle contribution part, and ordinary quarks contribution part. The first two parts are computed in this paper and we show that the direct TC2 interaction part is the same as that in the one-doublet technicolor model, while effective Z' contributions are at least proportional to the p^2 order parameter \beta_1 in the electroweak chiral Lagrangian and typical features of topcolor-assisted technicolor model are that it only allows positive T and U parameters and the T parameter varies in the range 0\sim 1/(25\alpha), the upper bound of T parameter will decrease as long as Z' mass become large. The S parameter can be either positive or negative depending on whether the Z' mass is large or small. The Z' mass is also bounded above and the upper bound depend on value of T parameter. We obtain the values for all the coefficients of the electroweak chiral Lagrangian up to order of p^4.Comment: 52 pages, 15 figure

    Broken-Symmetry States of Dirac Fermions in Graphene with A Partially Filled High Landau Level

    Get PDF
    We report on numerical study of the Dirac fermions in partially filled N=3 Landau level (LL) in graphene. At half-filling, the equal-time density-density correlation function displays sharp peaks at nonzero wavevectors ±q\pm {\bf q^{*}}. Finite-size scaling shows that the peak value grows with electron number and diverges in the thermodynamic limit, which suggests an instability toward a charge density wave. A symmetry broken stripe phase is formed at large system size limit, which is robust against purturbation from disorder scattering. Such a quantum phase is experimentally observable through transport measurements. Associated with the special wavefunctions of the Dirac LL, both stripe and bubble phases become possible candidates for the ground state of the Dirac fermions in graphene with lower filling factors in the N=3 LL.Comment: Contains are slightly changed. Journal reference and DOI are adde

    Functional Genomics Profiling of Bladder Urothelial Carcinoma MicroRNAome as a Potential Biomarker.

    Get PDF
    Though bladder urothelial carcinoma is the most common form of bladder cancer, advances in its diagnosis and treatment have been modest in the past few decades. To evaluate miRNAs as putative disease markers for bladder urothelial carcinoma, this study develops a process to identify dysregulated miRNAs in cancer patients and potentially stratify patients based on the association of their microRNAome phenotype to genomic alterations. Using RNA sequencing data for 409 patients from the Cancer Genome Atlas, we examined miRNA differential expression between cancer and normal tissues and associated differentially expressed miRNAs with patient survival and clinical variables. We then correlated miRNA expressions with genomic alterations using the Wilcoxon test and REVEALER. We found a panel of six miRNAs dysregulated in bladder cancer and exhibited correlations to patient survival. We also performed differential expression analysis and clinical variable correlations to identify miRNAs associated with tobacco smoking, the most important risk factor for bladder cancer. Two miRNAs, miR-323a and miR-431, were differentially expressed in smoking patients compared to nonsmoking patients and were associated with primary tumor size. Functional studies of these miRNAs and the genomic features we identified for potential stratification may reveal underlying mechanisms of bladder cancer carcinogenesis and further diagnosis and treatment methods for urothelial bladder carcinoma

    Dark Light Higgs

    Full text link
    We study a limit of the nearly-Peccei-Quinn-symmetric Next-to-Minimal Supersymmetric Standard Model possessing novel Higgs and dark matter (DM) properties. In this scenario, there naturally co-exist three light singlet-like particles: a scalar, a pseudoscalar, and a singlino-like DM candidate, all with masses of order 0.1-10 GeV. The decay of a Standard Model-like Higgs boson to pairs of the light scalars or pseudoscalars is generically suppressed, avoiding constraints from collider searches for these channels. For a certain parameter window annihilation into the light pseudoscalar and exchange of the light scalar with nucleons allow the singlino to achieve the correct relic density and a large direct detection cross section consistent with the CoGeNT and DAMA/LIBRA preferred region simultaneously. This parameter space is consistent with experimental constraints from LEP, the Tevatron, and Upsilon- and flavor physics.Comment: 4 pages, 4 figures, final version for Phys. Rev. Let

    Modified Sequential Kriging Optimization for Multidisciplinary Complex Product Simulation

    Get PDF
    Directing to the high cost of computer simulation optimization problem, Kriging surrogate model is widely used to decrease the computation time. Since the sequential Kriging optimization is time consuming, this article extends the expected improvement and put forwards a modified sequential Kriging optimization (MSKO). This method changes the twice optimization problem into once by adding more than one point at the same time. Before re-fitting the Kriging model, the new sample points are verified to ensure that they do not overlap the previous one and the distance between two sample points is not too small. This article presents the double stopping criterion to keep the root mean square error (RMSE) of the final surrogate model at an acceptable level. The example shows that MSKO can approach the global optimization quickly and accurately. MSKO can ensure global optimization no matter where the initial point is. Application of active suspension indicates that the proposed method is effective. © 2010 Chinese Journal of Aeronautics

    Origin of the Scaling Law in Human Mobility: Hierarchical Organization of Traffic Systems

    Full text link
    Uncovering the mechanism leading to the scaling law in human trajectories is of fundamental importance in understanding many spatiotemporal phenomena. We propose a hierarchical geographical model to mimic the real traffic system, upon which a random walker will generate a power-law travel displacement distribution with exponent -2. When considering the inhomogeneities of cities' locations and attractions, this model reproduces a power-law displacement distribution with an exponential cutoff, as well as a scaling behavior in the probability density of having traveled a certain distance at a certain time. Our results agree very well with the empirical observations reported in [D. Brockmann et al., Nature 439, 462 (2006)].Comment: 6 figures, 4 page
    corecore