37 research outputs found

    JOINT SPACE NARROWING CLASSIFICATION BASED ON HAND X-RAY IMAGE

    Get PDF
    X-ray images have been widely used by radiologists for disease diagnosis. For Rheumatoid Arthritis (RA), Joint Space Narrowing (JSN) is one major symptom that can be read from X-ray images. In this thesis, we investigate the JSN classification for RA diagnosis in terms of methodology, data analysis, neural network models, performance analysis. First, we perform the statistical analysis of X-ray data and design a baseline convolutional neural network (CNN). We show algorithms to extract joint patches. Then we conduct prediction analysis. Second, we design the fusion model to harness the correlation between the same type of joints. Sharing information within one X-ray image would increase the prediction performance. We also compare unified classifiers and separate classifiers. Third, we design the attention map model for joints with complex contexts, which filters out unrelated surroundings. We conclude that our models give good JSN prediction for Rheumatoid Arthritis

    Study of instantaneous starvation at a finite-length line contact

    Get PDF
    Starvation phenomenon widely exists in the non-conforming contacts when high-viscosity lubricating oil or greases are used. However, most of the work focuses on the steady state starvation, and the phenomenon of instantaneous starvation is not well explored by scholars. This paper experimentally studies the effect of speed, base oil viscosity and load on instantaneous starvation, and proposes some improvement measures to weaken the instantaneous starvation

    A Cascaded Approach for ultraly High Performance Lesion Detection and False Positive Removal in Liver CT Scans

    Full text link
    Liver cancer has high morbidity and mortality rates in the world. Multi-phase CT is a main medical imaging modality for detecting/identifying and diagnosing liver tumors. Automatically detecting and classifying liver lesions in CT images have the potential to improve the clinical workflow. This task remains challenging due to liver lesions' large variations in size, appearance, image contrast, and the complexities of tumor types or subtypes. In this work, we customize a multi-object labeling tool for multi-phase CT images, which is used to curate a large-scale dataset containing 1,631 patients with four-phase CT images, multi-organ masks, and multi-lesion (six major types of liver lesions confirmed by pathology) masks. We develop a two-stage liver lesion detection pipeline, where the high-sensitivity detecting algorithms in the first stage discover as many lesion proposals as possible, and the lesion-reclassification algorithms in the second stage remove as many false alarms as possible. The multi-sensitivity lesion detection algorithm maximizes the information utilization of the individual probability maps of segmentation, and the lesion-shuffle augmentation effectively explores the texture contrast between lesions and the liver. Independently tested on 331 patient cases, the proposed model achieves high sensitivity and specificity for malignancy classification in the multi-phase contrast-enhanced CT (99.2%, 97.1%, diagnosis setting) and in the noncontrast CT (97.3%, 95.7%, screening setting)

    Liver Tumor Screening and Diagnosis in CT with Pixel-Lesion-Patient Network

    Full text link
    Liver tumor segmentation and classification are important tasks in computer aided diagnosis. We aim to address three problems: liver tumor screening and preliminary diagnosis in non-contrast computed tomography (CT), and differential diagnosis in dynamic contrast-enhanced CT. A novel framework named Pixel-Lesion-pAtient Network (PLAN) is proposed. It uses a mask transformer to jointly segment and classify each lesion with improved anchor queries and a foreground-enhanced sampling loss. It also has an image-wise classifier to effectively aggregate global information and predict patient-level diagnosis. A large-scale multi-phase dataset is collected containing 939 tumor patients and 810 normal subjects. 4010 tumor instances of eight types are extensively annotated. On the non-contrast tumor screening task, PLAN achieves 95% and 96% in patient-level sensitivity and specificity. On contrast-enhanced CT, our lesion-level detection precision, recall, and classification accuracy are 92%, 89%, and 86%, outperforming widely used CNN and transformers for lesion segmentation. We also conduct a reader study on a holdout set of 250 cases. PLAN is on par with a senior human radiologist, showing the clinical significance of our results.Comment: MICCAI 2023, code: https://github.com/alibaba-damo-academy/pixel-lesion-patient-networ

    CancerUniT: Towards a Single Unified Model for Effective Detection, Segmentation, and Diagnosis of Eight Major Cancers Using a Large Collection of CT Scans

    Full text link
    Human readers or radiologists routinely perform full-body multi-organ multi-disease detection and diagnosis in clinical practice, while most medical AI systems are built to focus on single organs with a narrow list of a few diseases. This might severely limit AI's clinical adoption. A certain number of AI models need to be assembled non-trivially to match the diagnostic process of a human reading a CT scan. In this paper, we construct a Unified Tumor Transformer (CancerUniT) model to jointly detect tumor existence & location and diagnose tumor characteristics for eight major cancers in CT scans. CancerUniT is a query-based Mask Transformer model with the output of multi-tumor prediction. We decouple the object queries into organ queries, tumor detection queries and tumor diagnosis queries, and further establish hierarchical relationships among the three groups. This clinically-inspired architecture effectively assists inter- and intra-organ representation learning of tumors and facilitates the resolution of these complex, anatomically related multi-organ cancer image reading tasks. CancerUniT is trained end-to-end using a curated large-scale CT images of 10,042 patients including eight major types of cancers and occurring non-cancer tumors (all are pathology-confirmed with 3D tumor masks annotated by radiologists). On the test set of 631 patients, CancerUniT has demonstrated strong performance under a set of clinically relevant evaluation metrics, substantially outperforming both multi-disease methods and an assembly of eight single-organ expert models in tumor detection, segmentation, and diagnosis. This moves one step closer towards a universal high performance cancer screening tool.Comment: ICCV 2023 Camera Ready Versio

    DEEP LEARNING APPLICATIONS IN BONE MINERAL DENSITY ESTIMATION, SPINE VERTEBRA DETECTION, AND LIVER TUMOR SEGMENTATION

    No full text
    As the aging population and related health concerns emerge in more countries than ever, we face many challenges such as the availability, quality, and cost of medical resources. Thanks to the development of machine learning and computer vision in recent years, Deep Learning (DL) can help solve some medical problems. The diagnosis of various diseases (such as spine disorders, low bone mineral density, and liver cancer) relies on X-rays or Computed Tomography (CT). DL models could automatically analyze these radiography scans and help with the diagnosis. Different organs and diseases have distinct characteristics, requiring customized algorithms and models. In this dissertation, we investigate several Computer Aided-Diagnosis (CAD) tasks and present corresponding DL solutions. Deep Learning has multiple advantages. Firstly, DL models could uncover underlying health issues invisible to humans. One example is the opportunistic screening of Osteoporosis through chest X-ray. We develop DL models, utilizing chest film to predict bone mineral density, which helps prevent bone fractures. Humans could not tell anything about bone density in the chest film, but DL models could reliably make the prediction. The second advantage is accuracy and efficiency. Reading radiography is tedious, requiring years of expertise. This is particularly true when a radiologist needs to localize potential liver tumors by looking through tens of CT slices, spending several minutes. Deep learning models could localize and identify the tumors within seconds, greatly reducing human labor. Experiments show DL models can pick up small tumors, which are hardly seen by the naked eye. Attention should be paid to deep learning limitations. Firstly, DL models lack explainability. Deep learning models store diagnostic knowledge and statistical patterns in their parameters, which are obscure to humans. Secondly, uncertainty exists for rare diseases. If not exposed to rare cases, the models would yield uncertain outcomes. Thirdly, training AI models are subject to high-quality data but the labeling quality varies in clinical practice. Despite the challenges and issues, deep learning models are promising to promote medical diagnosis in society

    Calculation Model and Rapid Estimation Method for Coal Seam Gas Content

    No full text
    Coalbed gas content is the most important parameter for forecasting and preventing the occurrence of coal and gas outburst. However, existing methods have difficulty obtaining the coalbed gas content accurately. In this study, a numerical calculation model for the rapid estimation of coal seam gas content was established based on the characteristic values of gas desorption at specific exposure times. Combined with technical verification, a new method which avoids the calculation of gas loss for the rapid estimation of gas content in the coal seam was investigated. Study results show that the balanced adsorption gas pressure and coal gas desorption characteristic coefficient (Kt) satisfy the exponential equation, and the gas content and Kt are linear equations. The correlation coefficient of the fitting equation gradually decreases as the exposure time of the coal sample increases. Using the new method to measure and calculate the gas content of coal samples at two different working faces of the Lubanshan North mine (LBS), the deviation of the calculated coal sample gas content ranged from 0.32% to 8.84%, with an average of only 4.49%. Therefore, the new method meets the needs of field engineering technology

    Study on the Permeability Change Characteristic of Gas-Bearing Coal under Cyclic Loading and Unloading Path

    No full text
    Using the self-developed three-axis servo fluid-solid coupling system with gas-solid coupling of gas-bearing coal, the variation law of the permeability of gas coal under the stress cycle loading and unloading path was studied. The qualitative and quantitative relationships between permeability, axial force, and radial stress of gas-bearing coals were established, and the variation law of permeability of gas-bearing coals was discussed. The results show that (1) different cyclic loading and unloading stress paths correspond to the permeability characteristics of different gas-bearing coals. (2) Permeability of gas-bearing coal decreases with the increase of axial stress and radial stress, and it has a logarithmic function with axial stress and radial stress. This shows that axial stress and radial stress are important factors affecting the permeability characteristics of gas-bearing coal. (3) Under the same stress loading and unloading conditions, the axial stress is less than radial stress on the permeability of gas-bearing coal. In the cyclic loading and unloading axial stress process, the permeability of the gas-bearing coal varies by a smaller extent than the cyclically unloaded confining force. (4) The cumulative damage rate of gas-bearing coal under axial stress gradually increases with the increase of the number of cycles of loading and unloading, and the rate of the cumulative damage rate of permeability is less than the corresponding rate of radial stress
    corecore