10 research outputs found

    Set-Membership Adaptive Localization Algorithm with Time-Varying Error Bounds for Underwater Wireless Sensor Networks

    No full text
    This paper presents a set-membership adaptive localization algorithm with time-varying error bounds for underwater wireless sensor networks (UWSNs). In large-scale UWSNs, the nonstationary underwater environments, the insufficient prior information of hybrid noise, the small sample size of available distance measurements, and the node mobility all pose severe challenges for localization, and most current schemes are not applicable. Unlike most of the existing approaches, we tackle the multihop localization problem in a set-membership framework based on the consideration that the distance measurement uncertainty can be cast into an unknown but bounded (UBB) context. The principle of our scheme is firstly to use the bootstrap method to build confidence intervals and error bounds from a small sample set of distance measurements and then to determine the positions by a low-complexity interval analysis method as well as an adaptive localization update specification with time-varying error bounds. Simulation results show that our proposed scheme is an effective and efficient localization approach in large-scale UWSNs

    Self-Powered Resilient Porous Sensors with Thermoelectric Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) and Carbon Nanotubes for Sensitive Temperature and Pressure Dual-Mode Sensing

    No full text
    Portable and wearable dual-mode sensors that can simultaneously detect multiple stimuli are essential for emerging artificial intelligence applications, and most efforts are devoted to exploring pressure-sensing devices. It is still challenging to integrate temperature and pressure-sensing functions into one sensor without the requirement for complex decoupling processes. Herein, we develop a self-powered and multifunctional dual-mode sensor by dip-coating melamine sponge with both poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and carboxylated single-walled carbon nanotubes (CNTs). By integrating thermoelectric and conductive PEDOT:PSS/CNT components with the hydrophilic and resilient porous sponge, the resultant sensor is efficient in independently detecting temperature and pressure changes. The temperature and pressure stimuli can be independently converted to voltage and electrical resistance signals on the basis of the Seebeck and piezoresistive effects, respectively. The sensor exhibits a high Seebeck coefficient of 35.9 μV K–1 with a minimum temperature detection limit of 0.4 K and a pressure sensitivity of −3.35% kPa–1 with a minimum pressure detection limit of 4 Pa. Interestingly, the sensor can also be self-powered upon illumination. These multi-functionalities make the sensor a promising tool for applications in electronic skin, soft robots, solar energy conversion, and personal health monitoring

    A novel strain of <i>Pseudozyma aphidis</i> from mulberry parasitises the conidia of mulberry powdery mildew fungus <i>Phyllactinia</i> sp. and its biocontrol effect in the fields

    No full text
    <p>Plant surface is colonised with a vast community of non-pathogenic epiphytic microorganisms which play an important role in host defence. In the present study, we reported a fungus from mulberry leaf surface that showed an antagonistic effect against mulberry powdery mildew fungal pathogen <i>Phyllactinia</i> sp. This novel isolate is a yeast-like fungus that was identified as <i>Pseudozyma aphidis</i> CNm2012 based on morphologic and phylogenetic analysis. According to our research, <i>P. aphidis</i> CNm2012 directly acted on the powdery mildew conidia via parasitism which caused conidial atrophy, collapse and eventually, cleavage and death. During the parasitic process, we found the isolate could gather around the conidia of <i>Phyllactinia</i> sp. and form hyphae that grew on the conidial surface and utilise the conidia as a nutrient source. Field studies revealed that <i>P. aphidis</i> CNm2012 could suppress the disease incidence of mulberry powdery mildew caused by <i>Phyllactinia</i> sp., and reduce the disease severity. To our knowledge, it is the first report of <i>P. aphidis</i> directly against powdery mildew fungus <i>Phyllactinia</i> spp. by parasitism. Our results indicated that <i>P. aphidis</i> CNm2012 could be served as an environmentally friendly alternative of chemical pesticides to manage mulberry powdery mildew disease.</p

    Role of Circular RNAs in Atherosclerosis through Regulation of Inflammation, Cell Proliferation, Migration, and Apoptosis: Focus on Atherosclerotic Cerebrovascular Disease

    No full text
    Atherosclerosis (AS) is a disease dangerous to human health and the main pathological cause of ischemic cardiovascular diseases. Although its pathogenesis is not fully understood, numerous basic and clinical studies have shown that AS is a chronic inflammatory disease existing in all stages of atherogenesis. It may be a common link or pathway in the pathogenesis of multiple atherogenic factors. Inflammation is associated with AS complications, such as plaque rupture and ischemic cerebral infarction. In addition to inflammation, apoptosis plays an important role in AS. Apoptosis is a type of programmed cell death, and different apoptotic cells have different or even opposite roles in the process of AS. Unlike linear RNA, circular RNA (circRNA) a covalently closed circular non-coding RNA, is stable and can sponge miRNA, which can affect the stages of AS by regulating downstream pathways. Ultimately, circRNAs play very important roles in AS by regulating inflammation, apoptosis, and some other mechanisms. The study of circular RNAs can provide new ideas for the prediction, prevention, and treatment of AS

    Three amphioxus reference genomes reveal gene and chromosome evolution of chordates

    No full text
    The slow-evolving invertebrate amphioxus has an irreplaceable role in advancing our understanding of the vertebrate origin and innovations. Here we resolve the nearly complete chromosomal genomes of three amphioxus species, one of which best recapitulates the 17 chordate ancestor linkage groups. We reconstruct the fusions, retention, or rearrangements between descendants of whole-genome duplications, which gave rise to the extant microchromosomes likely existed in the vertebrate ancestor. Similar to vertebrates, the amphioxus genome gradually establishes its three-dimensional chromatin architecture at the onset of zygotic activation and forms two topologically associated domains at the Hox gene cluster. We find that all three amphioxus species have ZW sex chromosomes with little sequence differentiation, and their putative sex-determining regions are nonhomologous to each other. Our results illuminate the unappreciated interspecific diversity and developmental dynamics of amphioxus genomes and provide high-quality references for understanding the mechanisms of chordate functional genome evolution

    Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation

    No full text
    Background: Microsporidian Nosema bombycis has received much attention because the pébrine disease of domesticated silkworms results in great economic losses in the silkworm industry. So far, no effective treatment could be found for pébrine. Compared to other known Nosema parasites, N. bombycis can unusually parasitize a broad range of hosts. To gain some insights into the underlying genetic mechanism of pathological ability and host range expansion in this parasite, a comparative genomic approach is conducted. The genome of two Nosema parasites, N. bombycis and N. antheraeae (an obligatory parasite to undomesticated silkworms Antheraea pernyi), were sequenced and compared with their distantly related species, N. ceranae (an obligatory parasite to honey bees). Results Our comparative genomics analysis show that the N. bombycis genome has greatly expanded due to the following three molecular mechanisms: 1) the proliferation of host-derived transposable elements, 2) the acquisition of many horizontally transferred genes from bacteria, and 3) the production of abundnant gene duplications. To our knowledge, duplicated genes derived not only from small-scale events (e.g., tandem duplications) but also from large-scale events (e.g., segmental duplications) have never been seen so abundant in any reported microsporidia genomes. Our relative dating analysis further indicated that these duplication events have arisen recently over very short evolutionary time. Furthermore, several duplicated genes involving in the cytotoxic metabolic pathway were found to undergo positive selection, suggestive of the role of duplicated genes on the adaptive evolution of pathogenic ability. Conclusions Genome expansion is rarely considered as the evolutionary outcome acting on those highly reduced and compact parasitic microsporidian genomes. This study, for the first time, demonstrates that the parasitic genomes can expand, instead of shrink, through several common molecular mechanisms such as gene duplication, horizontal gene transfer, and transposable element expansion. We also showed that the duplicated genes can serve as raw materials for evolutionary innovations possibly contributing to the increase of pathologenic ability. Based on our research, we propose that duplicated genes of N. bombycis should be treated as primary targets for treatment designs against pébrine.Botany, Department ofScience, Faculty ofNon UBCReviewedFacult
    corecore