342 research outputs found
Transport Properties of Strong-Interaction Matter
The properties of strong-interaction matter are probed in ultra-relativistic
heavy-ion collisions. In the context of measurements of the elliptic flow at
RHIC and the LHC the shear viscosity is of particular interest. In this
presentation we discuss recent results for eta/s in hadronic matter at
vanishing baryo-chemical potential within kinetic theory. Using the
Nambu-Jona-Lasinio model, special attention is paid to effects arising from the
restoration of spontaneously broken chiral symmetry with increasing
temperature.Comment: 8 pages, 4 figures, presented at the HIC for FAIR Workshop and XXVIII
Max Born Symposium "Three days on Quarkyonic Island", Wroclaw, May 19-21,
2011; v2: conversion to Pa in fig. 2 correcte
Evaluation Of Measurement Data Across Eight GIS Basemaps Using Drumlins: Combining Basemaps Is Optimal
Choosing the best basemap for landform data collection and analysis is fundamental for accurate measurements and usability. Different types of basemaps may affect how we perceive relief through a map (Phillips et al., 1975); thereby, affecting the precision of data collected. This project collected length and azimuth data of 60 drumlins in Western, NY from four different, ArcGIS online (AGOL)-provided basemaps, as well as two parallel-to-strike and two perpendicular-to-strike hillshades (n=4). Testing the mean length (1,662m, ±529) and azimuth (171°, ±0.3) data for uniformity across basemaps determined if any basemap is more or less reliable for data collection. The Terrain map and 351° hillshade showed the lowest statistic values (t(59) = 1.84, p = .007, R2 = 0.4116). This was due to a poor direction of shading that caused visual loss of the drumlin tails. The least number of difference occurred between the USGS Topographic map and the USA Topographic map (t(59) = -0.01, p = .992, R2 = 0.9412), maps married in creation. The more traditional USGS/USA Topographic map is better for measurements of length and orientation due to the more established outline of landforms and less visual variability. Combining hillshade and topographic maps, however, can create an optimal representation of landforms for remote data collection. Choosing, or better yet, creating the correct basemap for an intended result can ensure readability and useability. It is essential that the creation of useful basemaps can keep up with the data being collected from advancing remote-sensing technologies
Gamow-Teller strength distributions at finite temperatures and electron capture in stellar environments
We propose a new method to calculate stellar weak-interaction rates. It is
based on the Thermo-Field-Dynamics formalism and allows the calculation of the
weak-interaction response of nuclei at finite temperatures. The thermal
evolution of the GT distributions is presented for the sample nuclei Fe and ~Ge. For Ge we also calculate the strength distribution
of first-forbidden transitions. We show that thermal effects shift the GT
centroid to lower excitation energies and make possible negative- and
low-energy transitions. In our model we demonstrate that the unblocking effect
for GT transitions in neutron-rich nuclei is sensitive to increasing
temperature. The results are used to calculate electron capture rates and are
compared to those obtained from the shell model.Comment: 16 pages, 9 figure
QCD phase diagram and charge fluctuations
We discuss the phase structure and fluctuations of conserved charges in two
flavor QCD. The importance of the density fluctuations to probe the existence
of the critical end point is summarized. The role of these fluctuations to
identify the first order phase transition in the presence of spinodal phase
separation is also discussed.Comment: 8 pages, 8 figures, plenary talk given at the 19th International
Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2006
(QM 2006), Shanghai, China, 14-20 Nov 200
Color-superconductivity in the strong-coupling regime of Landau gauge QCD
The chirally unbroken and the superconducting 2SC and CFL phases are
investigated in the chiral limit within a Dyson-Schwinger approach for the
quark propagator in QCD. The hierarchy of Green's functions is truncated such
that at vanishing density known results for the vacuum and at asymptotically
high densities the corresponding weak-coupling expressions are recovered. The
anomalous dimensions of the gap functions are analytically calculated. Based on
the quark propagator the phase structure is studied, and results for the gap
functions, occupation numbers, coherence lengths and pressure differences are
given and compared with the corresponding expressions in the weak-coupling
regime. At moderate chemical potentials the quasiparticle pairing gaps are
several times larger than the extrapolated weak-coupling results.Comment: 14 pages, 9 figures; v2: one reference adde
On the appearance of hyperons in neutron stars
By employing a recently constructed hyperon-nucleon potential the equation of
state of \beta-equilibrated and charge neutral nucleonic matter is calculated.
The hyperon-nucleon potential is a low-momentum potential which is obtained
within a renormalization group framework. Based on the Hartree-Fock
approximation at zero temperature the densities at which hyperons appear in
neutron stars are estimated. For several different bare hyperon-nucleon
potentials and a wide range of nuclear matter parameters it is found that
hyperons in neutron stars are always present. These findings have profound
consequences for the mass and radius of neutron stars.Comment: 12 pages, 12 figures, RevTeX4; summary and conclusions are
strengthened, to appear in PR
A nonlinear classical model for the decay widths of Isoscalar Giant Monopole Resonances
The decay of the Isoscalar Giant Monopole Resonance (ISGMR) in nuclei is
studied by means of a nonlinear classical model consisting of several
noninteracting nucleons (particles) moving in a potential well with an
oscillating nuclear surface (wall). The motion of the nuclear surface is
described by means of a collective variable which appears explicitly in the
Hamiltonian as an additional degree of freedom. The total energy of the system
is therefore conserved. Although the particles do not directly interact with
each other, their motions are indirectly coupled by means of their interaction
with the moving nuclear surface. We consider as free parameters in this model
the degree of collectivity and the fraction of nucleons that participate to the
decay of the collective excitation. Specifically, we have calculated the decay
width of the ISGMR in the spherical nuclei , ,
and . Despite its simplicity and its purely
classical nature, the model reproduces the trend of the experimental data which
show that with increasing mass number the decay width decreases. Moreover the
experimental results (with the exception of ) can be well fitted
using appropriate values for the free parameters mentioned above. It is also
found that these values allow for a good description of the experimentally
measured and decay widths. In addition, we give
a prediction for the decay width of the exotic isotope for which
there is experimental interest. The agreement of our results with the
corresponding experimental data for medium-heavy nuclei is dictated by the
underlying classical mechanics i.e. the behaviour of the maximum Lyapunov
exponent as a function of the system size
The renormalization group and quark number fluctuations in the Polyakov loop extended quark-meson model at finite baryon density
Thermodynamics and the phase structure of the Polyakov loop-extended two
flavors chiral quark--meson (PQM) model is explored beyond the mean-field
approximation. The analysis of the PQM model is based on the functional
renormalization group (FRG) method. We formulate and solve the renormalization
group flow equation for the scale-dependent thermodynamic potential in the
presence of the gluonic background field at finite temperature and density. We
determine the phase diagram of the PQM model in the FRG approach and discuss
its modification in comparison with the one obtained under the mean-field
approximation. We focus on properties of the net-quark number density
fluctuations as well as their higher moments and discuss the influence of
non-perturbative effects on their properties near the chiral crossover
transition. We show, that with an increasing net-quark number density the
higher order moments exhibit a peculiar structure near the phase transition. We
also consider ratios of different moments of the net-quark number density and
discuss their role as probes of deconfinement and chiral phase transitions
Hadronic unquenching effects in the quark propagator
We investigate hadronic unquenching effects in light quarks and mesons.
Within the non-perturbative continuum framework of Schwinger-Dyson and
Bethe-Salpeter equations we quantify the strength of the back reaction of the
pion onto the quark-gluon interaction. To this end we add a Yang-Mills part of
the interaction such that unquenched lattice results for various current quark
masses are reproduced. We find considerable effects in the quark mass function
at low momenta as well as for the chiral condensate. The quark wave function is
less affected. The Gell--Mann-Oakes-Renner relation is valid to good accuracy
up to pion masses of 400-500 MeV. As a byproduct of our investigation we verify
the Coleman theorem, that chiral symmetry cannot be broken spontaneously when
QCD is reduced to 1+1 dimensions.Comment: 27 pages, 15 figures, minor corrections and clarifications; version
to appear in PR
Double Giant Dipole Resonance in ^{208}Pb
Double-dipole excitations in ^{208}Pb are analyzed within a microscopic model
explicitly treating 2p2h-excitations. Collective states built from such
2p2h-excitations are shown to appear at about twice the energy of the isovector
giant dipole resonance, in agreement with the experimental findings. The
calculated cross section for Coulomb excitation at relativistic energies cannot
explain simultaneously the measured single-dipole and double-dipole cross
sections, however.Comment: 7 pages, Latex, 5 postscript figure
- âŠ