481 research outputs found

    Human behavioural analysis with self-organizing map for ambient assisted living

    Get PDF
    This paper presents a system for automatically classifying the resting location of a moving object in an indoor environment. The system uses an unsupervised neural network (Self Organising Feature Map) fully implemented on a low-cost, low-power automated home-based surveillance system, capable of monitoring activity level of elders living alone independently. The proposed system runs on an embedded platform with a specialised ceiling-mounted video sensor for intelligent activity monitoring. The system has the ability to learn resting locations, to measure overall activity levels and to detect specific events such as potential falls. First order motion information, including first order moving average smoothing, is generated from the 2D image coordinates (trajectories). A novel edge-based object detection algorithm capable of running at a reasonable speed on the embedded platform has been developed. The classification is dynamic and achieved in real-time. The dynamic classifier is achieved using a SOFM and a probabilistic model. Experimental results show less than 20% classification error, showing the robustness of our approach over others in literature with minimal power consumption. The head location of the subject is also estimated by a novel approach capable of running on any resource limited platform with power constraints

    Measuring the Cosmic Ray Muon-Induced Fast Neutron Spectrum by (n,p) Isotope Production Reactions in Underground Detectors

    Full text link
    While cosmic ray muons themselves are relatively easy to veto in underground detectors, their interactions with nuclei create more insidious backgrounds via: (i) the decays of long-lived isotopes produced by muon-induced spallation reactions inside the detector, (ii) spallation reactions initiated by fast muon-induced neutrons entering from outside the detector, and (iii) nuclear recoils initiated by fast muon-induced neutrons entering from outside the detector. These backgrounds, which are difficult to veto or shield against, are very important for solar, reactor, dark matter, and other underground experiments, especially as increased sensitivity is pursued. We used fluka to calculate the production rates and spectra of all prominent secondaries produced by cosmic ray muons, in particular focusing on secondary neutrons, due to their importance. Since the neutron spectrum is steeply falling, the total neutron production rate is sensitive just to the relatively soft neutrons, and not to the fast-neutron component. We show that the neutron spectrum in the range between 10 and 100 MeV can instead be probed by the (n, p)-induced isotope production rates 12C(n, p)12B and 16O(n, p)16N in oil- and water-based detectors. The result for 12B is in good agreement with the recent KamLAND measurement. Besides testing the calculation of muon secondaries, these results are also of practical importance, since 12B (T1/2 = 20.2 ms, Q = 13.4 MeV) and 16N (T1/2 = 7.13 s, Q = 10.4 MeV) are among the dominant spallation backgrounds in these detectors

    Whale sharks as oceanic nurseries for Golden Trevally

    Get PDF
    The Golden Trevally, Gnathanodon speciosus, is a large predatory fish with an extremely broad tropical Indo-Pacific distribution that crosses many biogeographical boundaries. Both published information and freely available imagery suggest that small juvenile G. speciosus are often associated with whale sharks, Rhincodon typus; an association that could explain the unusually widespread distribution of G. speciosus, and suggests a novel nursery relationship. The possibility of such an association has the potential to reshape our understanding of the ecological roles played by long-range migrants such as R. typus and other megafauna, our understanding of the full extent of their conservation value, and how we manage both members of the relationship

    Muon-Induced Background Study for Underground Laboratories

    Full text link
    We provide a comprehensive study of the cosmic-ray muon flux and induced activity as a function of overburden along with a convenient parameterization of the salient fluxes and differential distributions for a suite of underground laboratories ranging in depth from \sim1 to 8 km.w.e.. Particular attention is given to the muon-induced fast neutron activity for the underground sites and we develop a Depth-Sensitivity-Relation to characterize the effect of such background in experiments searching for WIMP dark matter and neutrinoless double beta decay.Comment: 18 pages, 28 figure

    CMOS Monolithic Active Pixel Sensors (MAPS) for future vertex detectors

    Full text link
    This paper reviews the development of CMOS Monolithic Active Pixel Sensors (MAPS) for future vertex detectors. MAPS are developed in a standard CMOS technology. In the imaging field, where the technology found its first applications, they are also known as CMOS Image Sensors. The use of MAPS as a detector for particle physics was first proposed at the end of 1999. Since then, their good performance in terms of spatial resolution, efficiency, radiation hardness have been demonstrated and work is now well under way to deliver the first MAPS-based vertex detectors.Comment: Invited talk at International Symposium on the Development of Detectors for Particle, AstroParticle and Synchrtron Radiation Experiments, Stanford Ca (SNIC06) 4 pages, pdf, 2 TIFF figures, PSN000

    Cosmogenic 11C production and sensitivity of organic scintillator detectors to pep and CNO neutrinos

    Full text link
    Several possible background sources determine the detectability of pep and CNO solar neutrinos in organic liquid scintillator detectors. Among such sources, the cosmogenic 11C nuclide plays a central role. 11C is produced underground in reactions induced by the residual cosmic muon flux. Experimental data available for the effective cross section for 11C by muons indicate that 11C will be the dominant source of background for the observation of pep and CNO neutrinos. 11C decays are expected to total a rate 2.5 (20) times higher than the combined rate of pep and CNO neutrinos in Borexino (KamLAND) in the energy window preferred for the pep measurement, between 0.8 and 1.3 MeV. This study examines the production mechanism of 11C by muon-induced showers in organic liquid scintillators with a novel approach: for the first time, we perform a detailed ab initio calculation of the production of a cosmogenic nuclide, 11C, taking into consideration all relevant production channels. Results of the calculation are compared with the effective cross sections measured by target experiments in muon beams. This paper also discusses a technique for reduction of background from 11C in organic liquid scintillator detectors, which allows to identify on a one-by-one basis and remove from the data set a large fraction of 11C decays. The background reduction technique hinges on an idea proposed by Martin Deutsch, who suggested that a neutron must be ejected in every interaction producing a 11C nuclide from 12C. 11C events are tagged by a three-fold coincidence with the parent muon track and the subsequent neutron capture on protons.Comment: 11 pages, 6 figures; added one section detailing comparison with previous estimates; added reference
    corecore